Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India.
Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India.
Bioresour Technol. 2014 Dec;173:140-147. doi: 10.1016/j.biortech.2014.09.088. Epub 2014 Sep 28.
This multiscale three-zone reactive mixing model provides a theoretical framework for engineering a scale separation in batch enzymatic hydrolysis of cellulose to strategize significant leaps in glucose yields. Formulated using the Liapunov-Schmidt method of the classical bifurcation theory, our model explores the multiscale spatiotemporal dynamics between the fundamental processes of macromixing (convection) and micromixing (diffusion) of the enzymes (Endoglucanase, Exoglucanase, β-glucasidase) and reducing sugars, adsorption and desorption of enzymes on the solid cellulosic substrates, and the product-inhibited liquid and solid phase enzymatic reactions that depolymerize microcrystalline cellulose (Avicel). The model is validated for a range of substrate loadings (2-5%) using our experimental results for the two asymptotic cases of no mixing and continuous mixing, as well as for the macro/micro scale-separated optimal mixing strategy that increases the glucose yield by up to 26% by macromixing completely for an initial period followed by micromixing for the remaining duration of the hydrolysis.
这种多尺度三区域反应混合模型为在纤维素批式酶解中实现尺度分离提供了一个理论框架,从而可以在葡萄糖产率方面取得显著的飞跃。该模型使用经典分岔理论的李雅普诺夫-施密特方法进行了构建,探讨了酶(内切葡聚糖酶、外切葡聚糖酶、β-葡萄糖苷酶)和还原糖的宏观混合(对流)和微观混合(扩散)、酶在固体纤维素底物上的吸附和解吸以及受产物抑制的液相反响和固相反响等基本过程之间的多尺度时空动力学,这些过程会将微晶纤维素(Avicel)解聚。该模型使用我们的实验结果进行了验证,实验涵盖了不同的底物负载(2-5%),包括无混合和连续混合的两种渐近情况,以及宏观/微观尺度分离的最佳混合策略,该策略通过在初始阶段完全进行宏观混合,然后在水解的剩余时间内进行微观混合,可将葡萄糖产率提高高达 26%。