Suppr超能文献

用于检测脓毒症相关微生物的分子检测板

Molecular panel for detection of sepsis-related microorganisms.

作者信息

Ferreira Leslie Ecker, Dalposso Karilene, Hackbarth Bruna Barbosa, Gonçalves Anderson R, Westphal Glauco Adrieno, França Paulo Henrique Condeixa de, Pinho Mauro de Souza Leite

机构信息

Programa de Pós-graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville, Joinville, SC, Brasil.

Departamento de Farmácia, Universidade da Região de Joinville, Joinville, SC, Brasil.

出版信息

Rev Bras Ter Intensiva. 2011 Mar;23(1):36-40.

Abstract

INTRODUCTION

Sepsis is a systemic inflammatory response related to high mortality rates in the hospital environment. Delayed etiological diagnosis and inadequate antimicrobial therapy are associated with treatment failures. Molecular tests based on polymerase chain reaction are regarded as faster and more accurate procedures than culture techniques for microbial identification, providing a higher rate of therapeutic success.

OBJECTIVE

To develop a panel of primers for DNA fragments of sepsis-related microorganisms.

METHODS

Primers for amplification of Enterobacter spp., Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida spp. were designed and tested for sensitivity and specificity on the basis of their respective standard strains.

RESULTS

The intended specificity was obtained for P. aeruginosa, S. aureus and Candida spp primers. Sensitivity tests showed a threshold for detection from 5 ng to 500 fg in blood samples contaminated with microbial DNA.

CONCLUSIONS

The molecular panel presented offers the advantage of a flexible 'open' system when compared to other multiplex detection methods.

摘要

引言

脓毒症是一种与医院环境中高死亡率相关的全身炎症反应。病因诊断延迟和抗菌治疗不足与治疗失败有关。基于聚合酶链反应的分子检测被认为是比培养技术更快、更准确的微生物鉴定方法,能提供更高的治疗成功率。

目的

开发一组用于脓毒症相关微生物DNA片段的引物。

方法

设计用于扩增肠杆菌属、大肠杆菌、铜绿假单胞菌、金黄色葡萄球菌和念珠菌属的引物,并根据各自的标准菌株测试其敏感性和特异性。

结果

铜绿假单胞菌、金黄色葡萄球菌和念珠菌属引物获得了预期的特异性。敏感性测试表明,在被微生物DNA污染的血液样本中,检测阈值为5纳克至500飞克。

结论

与其他多重检测方法相比,本研究提出的分子检测组具有灵活“开放”系统的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验