Durrleman Stanley, Prastawa Marcel, Charon Nicolas, Korenberg Julie R, Joshi Sarang, Gerig Guido, Trouvé Alain
INRIA, Project-Team Aramis, Centre Paris-Rocquencourt, France; Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, ICM, Paris, France; Inserm, U1127, ICM, Paris, France; CNRS, UMR 7225, ICM, Paris, France; Institut du Cerveau et de la Moëlle Épinière (ICM), Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT 84112, USA.
Neuroimage. 2014 Nov 1;101:35-49. doi: 10.1016/j.neuroimage.2014.06.043. Epub 2014 Jun 26.
We propose a generic method for the statistical analysis of collections of anatomical shape complexes, namely sets of surfaces that were previously segmented and labeled in a group of subjects. The method estimates an anatomical model, the template complex, that is representative of the population under study. Its shape reflects anatomical invariants within the dataset. In addition, the method automatically places control points near the most variable parts of the template complex. Vectors attached to these points are parameters of deformations of the ambient 3D space. These deformations warp the template to each subject's complex in a way that preserves the organization of the anatomical structures. Multivariate statistical analysis is applied to these deformation parameters to test for group differences. Results of the statistical analysis are then expressed in terms of deformation patterns of the template complex, and can be visualized and interpreted. The user needs only to specify the topology of the template complex and the number of control points. The method then automatically estimates the shape of the template complex, the optimal position of control points and deformation parameters. The proposed approach is completely generic with respect to any type of application and well adapted to efficient use in clinical studies, in that it does not require point correspondence across surfaces and is robust to mesh imperfections such as holes, spikes, inconsistent orientation or irregular meshing. The approach is illustrated with a neuroimaging study of Down syndrome (DS). The results demonstrate that the complex of deep brain structures shows a statistically significant shape difference between control and DS subjects. The deformation-based modelingis able to classify subjects with very high specificity and sensitivity, thus showing important generalization capability even given a low sample size. We show that the results remain significant even if the number of control points, and hence the dimension of variables in the statistical model, are drastically reduced. The analysis may even suggest that parsimonious models have an increased statistical performance. The method has been implemented in the software Deformetrica, which is publicly available at www.deformetrica.org.
我们提出了一种用于对解剖形状复合体集合进行统计分析的通用方法,即对先前在一组受试者中进行分割和标记的表面集合进行分析。该方法估计一个解剖模型,即模板复合体,它代表了所研究的人群。其形状反映了数据集中的解剖不变性。此外,该方法会在模板复合体变化最大的部分附近自动放置控制点。附着在这些点上的向量是周围三维空间变形的参数。这些变形以一种保留解剖结构组织的方式将模板扭曲到每个受试者的复合体上。对这些变形参数进行多变量统计分析以检验组间差异。然后,统计分析结果以模板复合体的变形模式表示,并且可以进行可视化和解释。用户只需指定模板复合体的拓扑结构和控制点的数量。然后,该方法会自动估计模板复合体的形状、控制点的最佳位置和变形参数。所提出的方法对于任何类型的应用都是完全通用的,并且非常适合在临床研究中高效使用,因为它不需要跨表面的点对应,并且对诸如孔洞、尖峰、方向不一致或不规则网格等网格缺陷具有鲁棒性。该方法通过对唐氏综合征(DS)的神经影像学研究进行了说明。结果表明,深部脑结构复合体在对照组和DS受试者之间显示出具有统计学意义的形状差异。基于变形的建模能够以非常高的特异性和敏感性对受试者进行分类,因此即使样本量较小也显示出重要的泛化能力。我们表明,即使控制点的数量以及因此统计模型中变量的维度大幅减少,结果仍然具有显著性。分析甚至可能表明简约模型具有更高的统计性能。该方法已在软件Deformetrica中实现,可在www.deformetrica.org上公开获取。