Suppr超能文献

基于渐进式模板曲面变形的海马形状建模及其验证。

Hippocampal Shape Modeling Based on a Progressive Template Surface Deformation and its Verification.

出版信息

IEEE Trans Med Imaging. 2015 Jun;34(6):1242-61. doi: 10.1109/TMI.2014.2382581. Epub 2014 Dec 18.

Abstract

Accurately recovering the hippocampal shapes against rough and noisy segmentations is as challenging as achieving good anatomical correspondence between the individual shapes. To address these issues, we propose a mesh-to-volume registration approach, characterized by a progressive model deformation. Our model implements flexible weighting scheme for model rigidity under a multi-level neighborhood for vertex connectivity. This method induces a large-to-small scale deformation of a template surface to build the pairwise correspondence by minimizing geometric distortion while robustly restoring the individuals' shape characteristics. We evaluated the proposed method's (1) accuracy and robustness in smooth surface reconstruction, (2) sensitivity in detecting significant shape differences between healthy control and disease groups (mild cognitive impairment and Alzheimer's disease), (3) robustness in constructing the anatomical correspondence between individual shape models, and (4) applicability in identifying subtle shape changes in relation to cognitive abilities in a healthy population. We compared the performance of the proposed method with other well-known methods--SPHARM-PDM, ShapeWorks and LDDMM volume registration with template injection--using various metrics of shape similarity, surface roughness, volume, and shape deformity. The experimental results showed that the proposed method generated smooth surfaces with less volume differences and better shape similarity to input volumes than others. The statistical analyses with clinical variables also showed that it was sensitive in detecting subtle shape changes of hippocampus.

摘要

准确恢复粗糙和嘈杂分割的海马形状与实现个体形状之间良好的解剖对应一样具有挑战性。为了解决这些问题,我们提出了一种网格到体积的配准方法,其特点是渐进式模型变形。我们的模型在顶点连接的多层次邻域下实现了灵活的模型刚性加权方案。该方法通过最小化几何变形来诱导模板表面的大到小尺度变形,从而在稳健地恢复个体形状特征的同时建立成对对应关系。我们评估了所提出方法的:(1)在平滑表面重建中的准确性和鲁棒性;(2)在检测健康对照组和疾病组(轻度认知障碍和阿尔茨海默病)之间显著形状差异方面的敏感性;(3)在构建个体形状模型之间的解剖对应关系方面的鲁棒性;(4)在识别健康人群中与认知能力相关的细微形状变化方面的适用性。我们使用各种形状相似性、表面粗糙度、体积和形状变形度量标准,将所提出的方法与其他知名方法——SPHARM-PDM、ShapeWorks 和 LDDMM 体积配准与模板注射——进行了性能比较。实验结果表明,与其他方法相比,所提出的方法生成的表面更平滑,体积差异更小,与输入体积的形状相似性更好。与临床变量的统计分析也表明,它能够敏感地检测出海马体的细微形状变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验