Suppr超能文献

基于改进径向基函数神经网络的激光陀螺温度补偿

Laser gyro temperature compensation using modified RBFNN.

作者信息

Ding Jicheng, Zhang Jian, Huang Weiquan, Chen Shuai

机构信息

College of Automation, Harbin Engineering University, Harbin 150001, China.

出版信息

Sensors (Basel). 2014 Oct 9;14(10):18711-27. doi: 10.3390/s141018711.

Abstract

To overcome the effect of temperature on laser gyro zero bias and to stabilize the laser gyro output, this study proposes a modified radial basis function neural network (RBFNN) based on a Kohonen network and an orthogonal least squares (OLS) algorithm. The modified method, which combines the pattern classification capability of the Kohonen network and the optimal choice capacity of OLS, avoids the random selection of RBFNN centers and improves the compensation accuracy of the RBFNN. It can quickly and accurately identify the effect of temperature on laser gyro zero bias. A number of comparable identification and compensation tests on a variety of temperature-changing situations are completed using the multiple linear regression (MLR), RBFNN and modified RBFNN methods. The test results based on several sets of gyro output in constant and changing temperature conditions demonstrate that the proposed method is able to overcome the effect of randomly selected RBFNN centers. The running time of the method is about 60 s shorter than that of traditional RBFNN under the same test conditions, which suggests that the calculations are reduced. Meanwhile, the compensated gyro output accuracy using the modified method is about 7.0 × 10-4 °/h; comparatively, the traditional RBFNN is about 9.0 × 10-4 °/h and the MLR is about 1.4 × 10-3 °/h.

摘要

为克服温度对激光陀螺零偏的影响并稳定激光陀螺输出,本研究提出一种基于Kohonen网络和正交最小二乘法(OLS)的改进型径向基函数神经网络(RBFNN)。该改进方法结合了Kohonen网络的模式分类能力和OLS的最优选择能力,避免了RBFNN中心的随机选择,提高了RBFNN的补偿精度。它能够快速准确地识别温度对激光陀螺零偏的影响。使用多元线性回归(MLR)、RBFNN和改进型RBFNN方法,在多种温度变化情况下完成了一系列可比的识别和补偿测试。基于几组在恒定和变化温度条件下的陀螺输出的测试结果表明,所提方法能够克服RBFNN中心随机选择的影响。在相同测试条件下,该方法的运行时间比传统RBFNN短约60 s,这表明计算量减少。同时,使用改进方法补偿后的陀螺输出精度约为7.0×10-4°/h;相比之下,传统RBFNN约为9.0×10-4°/h,MLR约为1.4×10-3°/h。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b345/4239900/36942fd50777/sensors-14-18711f1.jpg

相似文献

1
Laser gyro temperature compensation using modified RBFNN.
Sensors (Basel). 2014 Oct 9;14(10):18711-27. doi: 10.3390/s141018711.
7
Macroeconomic Image Analysis and GDP Prediction Based on the Genetic Algorithm Radial Basis Function Neural Network (RBFNN-GA).
Comput Intell Neurosci. 2021 Nov 22;2021:2000159. doi: 10.1155/2021/2000159. eCollection 2021.
8
Error Model and Compensation of Bell-Shaped Vibratory Gyro.
Sensors (Basel). 2015 Sep 17;15(9):23684-705. doi: 10.3390/s150923684.
9
Learning Subspace-Based RBFNN Using Coevolutionary Algorithm for Complex Classification Tasks.
IEEE Trans Neural Netw Learn Syst. 2016 Jan;27(1):47-61. doi: 10.1109/TNNLS.2015.2411615. Epub 2015 Mar 25.
10
Electrical Impedance Tomography Based on Grey Wolf Optimized Radial Basis Function Neural Network.
Micromachines (Basel). 2022 Jul 15;13(7):1120. doi: 10.3390/mi13071120.

引用本文的文献

1
Adaptive Neural Network Robust Control of FOG with Output Constraints.
Biomimetics (Basel). 2025 Jun 5;10(6):372. doi: 10.3390/biomimetics10060372.
2
3
Automatic Sorting System for Rigid Piezoelectric Transducer Wafers Used in Displacement Adjustment.
Micromachines (Basel). 2020 Sep 30;11(10):915. doi: 10.3390/mi11100915.
8
Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation.
Sensors (Basel). 2015 Nov 30;15(12):29910-22. doi: 10.3390/s151229777.
10

本文引用的文献

1
Visualized analysis of mixed numeric and categorical data via extended self-organizing map.
IEEE Trans Neural Netw Learn Syst. 2012 Jan;23(1):72-86. doi: 10.1109/TNNLS.2011.2178323.
2
An enhanced MEMS error modeling approach based on Nu-Support Vector Regression.
Sensors (Basel). 2012;12(7):9448-66. doi: 10.3390/s120709448. Epub 2012 Jul 9.
3
Parallel programmable asynchronous neighborhood mechanism for Kohonen SOM implemented in CMOS technology.
IEEE Trans Neural Netw. 2011 Dec;22(12):2091-104. doi: 10.1109/TNN.2011.2169809. Epub 2011 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验