Ding Jicheng, Zhang Jian, Huang Weiquan, Chen Shuai
College of Automation, Harbin Engineering University, Harbin 150001, China.
Sensors (Basel). 2014 Oct 9;14(10):18711-27. doi: 10.3390/s141018711.
To overcome the effect of temperature on laser gyro zero bias and to stabilize the laser gyro output, this study proposes a modified radial basis function neural network (RBFNN) based on a Kohonen network and an orthogonal least squares (OLS) algorithm. The modified method, which combines the pattern classification capability of the Kohonen network and the optimal choice capacity of OLS, avoids the random selection of RBFNN centers and improves the compensation accuracy of the RBFNN. It can quickly and accurately identify the effect of temperature on laser gyro zero bias. A number of comparable identification and compensation tests on a variety of temperature-changing situations are completed using the multiple linear regression (MLR), RBFNN and modified RBFNN methods. The test results based on several sets of gyro output in constant and changing temperature conditions demonstrate that the proposed method is able to overcome the effect of randomly selected RBFNN centers. The running time of the method is about 60 s shorter than that of traditional RBFNN under the same test conditions, which suggests that the calculations are reduced. Meanwhile, the compensated gyro output accuracy using the modified method is about 7.0 × 10-4 °/h; comparatively, the traditional RBFNN is about 9.0 × 10-4 °/h and the MLR is about 1.4 × 10-3 °/h.
为克服温度对激光陀螺零偏的影响并稳定激光陀螺输出,本研究提出一种基于Kohonen网络和正交最小二乘法(OLS)的改进型径向基函数神经网络(RBFNN)。该改进方法结合了Kohonen网络的模式分类能力和OLS的最优选择能力,避免了RBFNN中心的随机选择,提高了RBFNN的补偿精度。它能够快速准确地识别温度对激光陀螺零偏的影响。使用多元线性回归(MLR)、RBFNN和改进型RBFNN方法,在多种温度变化情况下完成了一系列可比的识别和补偿测试。基于几组在恒定和变化温度条件下的陀螺输出的测试结果表明,所提方法能够克服RBFNN中心随机选择的影响。在相同测试条件下,该方法的运行时间比传统RBFNN短约60 s,这表明计算量减少。同时,使用改进方法补偿后的陀螺输出精度约为7.0×10-4°/h;相比之下,传统RBFNN约为9.0×10-4°/h,MLR约为1.4×10-3°/h。