Department of Chemistry, Seoul National University , Seoul 151-747, South Korea.
J Am Chem Soc. 2014 Oct 22;136(42):14629-38. doi: 10.1021/ja508343a. Epub 2014 Oct 13.
In the search for new therapeutic agents for currently incurable diseases, attention has turned to traditionally "undruggable" targets, and collections of drug-like small molecules with high diversity and quality have become a prerequisite for new breakthroughs. To generate such collections, the diversity-oriented synthesis (DOS) strategy was developed, which aims to populate new chemical space with drug-like compounds containing a high degree of molecular diversity. The resulting DOS-derived libraries have been of great value for the discovery of various bioactive small molecules and therapeutic agents, and thus DOS has emerged as an essential tool in chemical biology and drug discovery. However, the key challenge has become how to design and synthesize drug-like small-molecule libraries with improved biological relevancy as well as maximum molecular diversity. This Perspective presents the development of privileged substructure-based DOS (pDOS), an efficient strategy for the construction of polyheterocyclic compound libraries with high biological relevancy. We envisioned the specific interaction of drug-like small molecules with certain biopolymers via the incorporation of privileged substructures into polyheterocyclic core skeletons. The importance of privileged substructures such as benzopyran, pyrimidine, and oxopiperazine in rigid skeletons was clearly demonstrated through the discovery of bioactive small molecules and the subsequent identification of appropriate target biomolecule using a method called "fluorescence difference in two-dimensional gel electrophoresis". Focusing on examples of pDOS-derived bioactive compounds with exceptional specificity, we discuss the capability of privileged structures to serve as chemical "navigators" toward biologically relevant chemical spaces. We also provide an outlook on chemical biology research and drug discovery using biologically relevant compound libraries constructed by pDOS, biology-oriented synthesis, or natural product-inspired DOS.
在寻找目前无法治愈的疾病的新治疗药物时,人们将注意力转向了传统的“不可成药”靶点,并且具有高度多样性和高质量的药物样小分子集合已成为新突破的前提。为了生成此类集合,开发了多样性导向合成(DOS)策略,其目的是用包含高度分子多样性的类药物化合物填充新的化学空间。由此产生的 DOS 衍生文库对于发现各种生物活性小分子和治疗剂非常有价值,因此 DOS 已成为化学生物学和药物发现的重要工具。然而,关键的挑战已成为如何设计和合成具有改进的生物学相关性和最大分子多样性的类药物小分子文库。本文着眼于基于优势结构的 DOS(pDOS)的发展,这是一种构建具有高生物学相关性的多杂环化合物文库的有效策略。我们设想通过将优势结构纳入多杂环核心骨架中,类药物小分子与某些生物聚合物的特定相互作用。通过将优势结构(如苯并吡喃、嘧啶和氧代哌嗪)整合到刚性骨架中,明显证明了优势结构在发现生物活性小分子以及随后使用称为“二维凝胶电泳中的荧光差异”的方法鉴定适当的靶标生物分子方面的重要性。本文重点讨论了具有异常特异性的 pDOS 衍生生物活性化合物的实例,讨论了优势结构作为通向生物学相关化学空间的化学“导航器”的能力。我们还对使用 pDOS、面向生物学的合成或受天然产物启发的 DOS 构建的具有生物学相关性的化合物文库进行化学生物学研究和药物发现进行了展望。