Department of Chemistry, Seoul National University, Seoul 08826, Korea (South).
Acc Chem Res. 2024 Nov 19;57(22):3254-3265. doi: 10.1021/acs.accounts.4c00452. Epub 2024 Oct 31.
ConspectusProtein-protein interactions (PPIs) are essential in numerous biological processes and diseases, making them attractive yet challenging drug targets. While many advances have been made in traditional drug discovery, targeting PPIs has been difficult due to a lack of specialized chemical libraries designed to modulate these interactions. Current libraries mainly focus on conventional target proteins like enzymes or receptors as substrate analogs rather than small-molecule modulators targeting PPIs. These traditional drug targets behave differently from PPIs. Conventional druggable targets have relatively small surfaces and binding pockets that have allowed them to be targeted with current libraries, but PPIs behave differently than these traditional drug targets. As a result, there is an urgent need for an innovative approach to expand the druggable space.To address this, we developed a privileged substructure-based diversity-oriented synthesis (pDOS) strategy, aimed at creating maximal skeletal diversity to explore broader biochemical space. Pyrimidine serves as the privileged substructure in our approach, which employs several strategies: (i) silver-catalyzed or iodine-mediated tandem cyclizations to generate pyrimidine-embedded polyheterocycles; (ii) diverse pairing strategies to produce pyrimidodiazepine-containing polyheterocyclic skeletons with enhanced scaffold saturation; (iii) skeletal transformation to develop pyrimidine-fused medium-sized azacycles via chemoselective cleavages or migrations of N-N or C-N bond; (iv) design of small-molecule peptidomimetics that systematically mimic three pivotal protein secondary structures using pyrimidodiazepine-based scaffolds; and (v) identification of pyrimidodiazepine-based small-molecules that allosterically inhibits the interaction between human ACE2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to block viral entry into host cells.Through these approaches, we generated 39 distinct pyrimidine-embedded frameworks, demonstrating significant molecular diversity validated by chemoinformatic analyses such as Tanimoto similarity and principal moment of inertia (PMI) analysis. This molecular diversity extends pyrimidine structures beyond traditional linear or bicyclic forms, creating polyheterocycles with enhanced 3D structural diversity. These novel frameworks overcome the limitation of simpler privileged scaffolds, offering promising tools for modulating PPIs.Our pDOS approach highlights how privileged structure-embedded polyheterocycles, particularly those based on pyrimidine, can effectively target previously undruggable PPIs. This strategy provides a new direction for drug discovery, allowing for the development of small molecules that operate beyond traditional drug-like rules. In addition to expanding the chemical space for PPI modulation, our pDOS strategy enables the creation of scaffolds that are particularly suited for targeting complex and dynamic protein interfaces. This innovation could significantly impact therapeutic development, offering solutions for previously intractable drug targets. By expanding the scope of pyrimidine-based scaffolds, we have opened up new possibilities for targeting PPIs and advancing chemical biology.This perspective demonstrates the potential outlines of our pDOS strategy in creating structurally diverse frameworks, offering a platform for the discovery of PPI modulators and facilitating the exploration of untapped biochemical spaces in drug development, potentially transforming the way we approach these complex biological interactions.
蛋白质-蛋白质相互作用(PPIs)在许多生物过程和疾病中至关重要,因此成为有吸引力但具有挑战性的药物靶点。尽管在传统药物发现方面取得了许多进展,但由于缺乏专门设计用于调节这些相互作用的化学库,靶向 PPI 一直具有挑战性。当前的文库主要集中在作为底物类似物的传统靶标蛋白上,如酶或受体,而不是针对 PPI 的小分子调节剂。这些传统的药物靶标与 PPI 的行为不同。传统的可成药靶标具有相对较小的表面和结合口袋,这使得它们可以被当前的文库靶向,但 PPI 的行为与这些传统的药物靶标不同。因此,迫切需要一种创新的方法来扩大可成药的空间。
为了解决这个问题,我们开发了一种基于特权亚结构的多样性导向合成(pDOS)策略,旨在创建最大的骨架多样性,以探索更广泛的生化空间。嘧啶在我们的方法中作为特权亚结构,它采用了几种策略:(i)银催化或碘介导的串联环化反应生成嵌入嘧啶的聚杂环;(ii)通过多种配对策略生成嘧啶二氮杂卓含聚杂环骨架,增强骨架饱和度;(iii)通过选择性裂解或 N-N 或 C-N 键迁移来开发嘧啶稠合的中等大小的氮杂环骨架;(iv)设计小分子肽模拟物,使用嘧啶二氮杂卓骨架系统地模拟三种关键的蛋白质二级结构;(v)鉴定嘧啶二氮杂卓基小分子,通过别构抑制人 ACE2 与 SARS-CoV-2 刺突蛋白受体结合域(RBD)之间的相互作用,阻断病毒进入宿主细胞。
通过这些方法,我们生成了 39 种不同的嘧啶嵌入框架,通过 chemoinformatic 分析(如 Tanimoto 相似性和主转动惯量(PMI)分析)验证了显著的分子多样性。这种分子多样性将嘧啶结构扩展到传统的线性或双环形式之外,创造了具有增强的 3D 结构多样性的聚杂环。这些新的框架克服了简单的特权支架的局限性,为调节 PPI 提供了有前途的工具。
我们的 pDOS 方法强调了如何有效地靶向以前不可成药的 PPI,特别是基于嘧啶的嵌入聚杂环。该策略为药物发现提供了新的方向,允许开发超越传统药物样规则的小分子。除了扩展 PPI 调节的化学空间外,我们的 pDOS 策略还能够创建特别适合靶向复杂和动态蛋白质界面的支架。这项创新可能会对治疗开发产生重大影响,为以前难以治疗的药物靶点提供解决方案。通过扩展嘧啶基支架的范围,我们为靶向 PPI 开辟了新的可能性,并推动了化学生物学的发展。
本文展示了我们的 pDOS 策略在创建结构多样化框架方面的潜在优势,为 PPI 调节剂的发现提供了一个平台,并促进了药物开发中未开发生化空间的探索,可能会改变我们对这些复杂生物相互作用的处理方式。