Suppr超能文献

基于正则化和相似度的图像恢复通用框架。

A general framework for regularized, similarity-based image restoration.

出版信息

IEEE Trans Image Process. 2014 Dec;23(12):5136-51. doi: 10.1109/TIP.2014.2362059. Epub 2014 Oct 8.

Abstract

Any image can be represented as a function defined on a weighted graph, in which the underlying structure of the image is encoded in kernel similarity and associated Laplacian matrices. In this paper, we develop an iterative graph-based framework for image restoration based on a new definition of the normalized graph Laplacian. We propose a cost function, which consists of a new data fidelity term and regularization term derived from the specific definition of the normalized graph Laplacian. The normalizing coefficients used in the definition of the Laplacian and associated regularization term are obtained using fast symmetry preserving matrix balancing. This results in some desired spectral properties for the normalized Laplacian such as being symmetric, positive semidefinite, and returning zero vector when applied to a constant image. Our algorithm comprises of outer and inner iterations, where in each outer iteration, the similarity weights are recomputed using the previous estimate and the updated objective function is minimized using inner conjugate gradient iterations. This procedure improves the performance of the algorithm for image deblurring, where we do not have access to a good initial estimate of the underlying image. In addition, the specific form of the cost function allows us to render the spectral analysis for the solutions of the corresponding linear equations. In addition, the proposed approach is general in the sense that we have shown its effectiveness for different restoration problems, including deblurring, denoising, and sharpening. Experimental results verify the effectiveness of the proposed algorithm on both synthetic and real examples.

摘要

任何图像都可以表示为定义在加权图上的函数,其中图像的底层结构编码在核相似性和相关的拉普拉斯矩阵中。在本文中,我们开发了一种基于新定义的归一化图拉普拉斯的迭代图为基础的图像恢复框架。我们提出了一个代价函数,它由一个新的数据保真项和由归一化图拉普拉斯的特定定义导出的正则化项组成。拉普拉斯和相关正则化项定义中使用的归一化系数是使用快速对称保持矩阵平衡获得的。这导致归一化拉普拉斯具有一些期望的谱性质,例如对称、半正定,以及应用于常数图像时返回零向量。我们的算法包括外部迭代和内部迭代,其中在每个外部迭代中,使用前一个估计重新计算相似性权重,并使用内部共轭梯度迭代最小化更新的目标函数。该过程提高了算法在图像去模糊中的性能,在这种情况下,我们无法获得底层图像的良好初始估计。此外,代价函数的特定形式允许我们对相应线性方程组的解进行谱分析。此外,所提出的方法是通用的,因为我们已经证明了它在不同的恢复问题,包括去模糊、去噪和锐化中的有效性。实验结果验证了所提出算法在合成和真实示例上的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验