Suppr超能文献

通过疾病风险评分的样本外估计策略减少未测量混杂因素存在时的偏差放大。

Reducing Bias Amplification in the Presence of Unmeasured Confounding Through Out-of-Sample Estimation Strategies for the Disease Risk Score.

作者信息

Wyss Richard, Lunt Mark, Brookhart M Alan, Glynn Robert J, Stürmer Til

机构信息

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill.

Arthritis Research UK Epidemiology Unit, Centre for Musculoskeletal Research, Institute of Inflammation and Repair, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.

出版信息

J Causal Inference. 2014 Sep 1;2(2):131-146. doi: 10.1515/jci-2014-0009.

Abstract

The prognostic score, or disease risk score (DRS), is a summary score that is used to control for confounding in non-experimental studies. While the DRS has been shown to effectively control for measured confounders, unmeasured confounding continues to be a fundamental obstacle in non-experimental research. Both theory and simulations have shown that in the presence of unmeasured confounding, controlling for variables that affect treatment (both instrumental variables and measured confounders) amplifies the bias caused by unmeasured confounders. In this paper, we use causal diagrams and path analysis to review and illustrate the process of bias amplification. We show that traditional estimation strategies for the DRS do not avoid bias amplification when controlling for predictors of treatment. We then discuss estimation strategies for the DRS that can potentially reduce bias amplification that is caused by controlling both instrumental variables and measured confounders. We show that under certain assumptions, estimating the DRS in populations outside the defined study cohort where treatment has not been introduced, or in outside populations with reduced treatment prevalence can control for the confounding effects of measured confounders while at the same time reduce bias amplification.

摘要

预后评分,即疾病风险评分(DRS),是一种汇总评分,用于在非实验性研究中控制混杂因素。虽然DRS已被证明能有效控制已测量的混杂因素,但未测量的混杂因素仍然是非实验性研究中的一个基本障碍。理论和模拟均表明,在存在未测量的混杂因素的情况下,控制影响治疗的变量(包括工具变量和已测量的混杂因素)会放大由未测量的混杂因素导致的偏差。在本文中,我们使用因果图和路径分析来回顾和说明偏差放大的过程。我们表明,当控制治疗预测因素时,DRS的传统估计策略无法避免偏差放大。然后,我们讨论了DRS的估计策略,这些策略可能会减少因同时控制工具变量和已测量的混杂因素而导致的偏差放大。我们表明,在某些假设下,在尚未引入治疗的定义研究队列之外的人群中,或在治疗患病率较低的外部人群中估计DRS,可以控制已测量混杂因素的混杂效应,同时减少偏差放大。

相似文献

9
A tutorial on the use of instrumental variables in pharmacoepidemiology.药物流行病学中工具变量使用教程。
Pharmacoepidemiol Drug Saf. 2017 Apr;26(4):357-367. doi: 10.1002/pds.4158. Epub 2017 Feb 27.

引用本文的文献

本文引用的文献

3
Propensity score calibration in the absence of surrogacy.在不存在替代指标的情况下进行倾向评分校准。
Am J Epidemiol. 2012 Jun 15;175(12):1294-302. doi: 10.1093/aje/kwr463. Epub 2012 Apr 24.
5
Invited commentary: understanding bias amplification.特邀评论:理解偏差放大。
Am J Epidemiol. 2011 Dec 1;174(11):1223-7; discussion pg 1228-9. doi: 10.1093/aje/kwr352. Epub 2011 Oct 27.
10
Use of disease risk scores in pharmacoepidemiologic studies.疾病风险评分在药物流行病学研究中的应用。
Stat Methods Med Res. 2009 Feb;18(1):67-80. doi: 10.1177/0962280208092347. Epub 2008 Jun 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验