Musiani Francesco, Rossetti Giulia, Capece Luciana, Gerger Thomas Martin, Micheletti Cristian, Varani Gabriele, Carloni Paolo
Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS) , via Bonomea 265, 34136 Trieste, Italy.
J Am Chem Soc. 2014 Nov 5;136(44):15631-7. doi: 10.1021/ja507812v. Epub 2014 Oct 27.
The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S(2). This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457-5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.
HIV-1反式激活蛋白(Tat蛋白)和几种小分子通过选择稀疏分布但预先存在的构象与HIV-1反式激活应答RNA(TAR)结合。因此,全面表征TAR构象集合和动力学对于理解这个典型系统至关重要,并且有助于发现针对这一关键调控元件的新型抗病毒药物。我们在此表明,分子动力学模拟可以通过弥合当前实验技术无法触及的功能相关时间尺度之间的差距,有效地朝着这一目标发挥作用。具体而言,我们基于RNA可用的最先进力场之一——parmbsc0 AMBER,对TAR进行了几次独立的长达微秒级的分子模拟。我们的模拟首先根据现有的实验数据进行验证,与测得的剩余偶极耦合和序参数S(2)取得了极佳的一致性。这与之前基于CHARMM36力场的分子动力学模拟(Salmon等人,《美国化学会志》2013年,第135卷,5457 - 5466页)形成对比,后者仅能与实验RDC值取得适度的吻合。接下来,我们将计算导向表征TAR在微秒时间尺度上的内部动力学。我们表明,在这个之前难以捉摸的时间尺度上观察到的构象波动具有强烈的功能导向特征,因为它们准备好维持并协助配体结合。