Breña-Medina Víctor, Champneys Alan
Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla No. 3001, Querétaro 76230, Mexico and Department of Engineering Mathematics, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, United Kingdom.
Department of Engineering Mathematics, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032923. doi: 10.1103/PhysRevE.90.032923. Epub 2014 Sep 26.
Subcritical Turing bifurcations of reaction-diffusion systems in large domains lead to spontaneous onset of well-developed localized patterns via the homoclinic snaking mechanism. This phenomenon is shown to occur naturally when balancing source and loss effects are included in a typical reaction-diffusion system, leading to a super- to subcritical transition. Implications are discussed [corrected]for a range of physical problems, arguing that subcriticality leads to naturally robust phase transitions to localized patterns.
大区域中反应扩散系统的亚临界图灵分岔通过同宿蜿蜒机制导致发育良好的局域模式自发出现。当在典型的反应扩散系统中纳入源和损耗效应时,这种现象自然会发生,从而导致从超临界到亚临界的转变。文中讨论了这一现象对一系列物理问题的影响,认为亚临界性会导致向局域模式的自然稳健相变。