Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (USA).
ChemSusChem. 2015 Feb;8(3):466-72. doi: 10.1002/cssc.201402443. Epub 2014 Oct 14.
The catalytic activity of secondary amines supported on mesoporous silica for the self-condensation of n-butanal to 2-ethylhexenal can be altered significantly by controlling the Brønsted acidity of M--OH species present on the surface of the support. In this study, M--OH (M=Sn, Zr, Ti, and Al) groups were doped onto the surface of SBA-15, a mesoporous silica, prior to grafting secondary propyl amine groups on to the support surface. The catalytic activity was found to depend critically on the synthesis procedure, the nature and amount of metal species introduced and the spatial separation between the acidic sites and amine groups. DFT analysis of the reaction pathway indicates that, for weak Brønsted acid groups, such as Si--OH, the rate-limiting step is C--C bond formation, whereas for stronger Brønsted acid groups, such as Ti and Al, hydrolysis of iminium species produced upon C--C bond formation is the rate-limiting step. Theoretical analysis shows further that the apparent activation energy decreases with increasing Brønsted acidity of the M--OH groups, consistent with experimental observation.
介孔硅负载的仲胺对正丁醛自缩合生成 2-乙基己烯醛的催化活性,可以通过控制载体表面上存在的 M--OH 物种的布朗斯台德酸度来显著改变。在这项研究中,在 SBA-15(一种介孔硅)表面上掺杂 M--OH(M=Sn、Zr、Ti 和 Al)基团,然后将仲丙基胺基团接枝到载体表面上。研究发现,催化活性严重依赖于合成程序、引入的金属物种的性质和数量以及酸性位和胺基之间的空间分离。反应途径的 DFT 分析表明,对于弱布朗斯台德酸基团,如 Si--OH,速率限制步骤是 C--C 键形成,而对于较强的布朗斯台德酸基团,如 Ti 和 Al,C--C 键形成后生成的亚胺物种的水解是速率限制步骤。理论分析进一步表明,表观活化能随 M--OH 基团的布朗斯台德酸度的增加而降低,这与实验观察结果一致。