Lega Bradley, Burke John, Jacobs Joshua, Kahana Michael J
Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Cereb Cortex. 2016 Jan;26(1):268-278. doi: 10.1093/cercor/bhu232. Epub 2014 Oct 14.
Phase-amplitude coupling (PAC) has been proposed as a neural mechanism for coordinating information processing across brain regions. Here we sought to characterize PAC in the human hippocampus, and in temporal and frontal cortices, during the formation of new episodic memories. Intracranial recordings taken as 56 neurosurgical patients studied and recalled lists of words revealed significant hippocampal PAC, with slow-theta activity (2.5-5 Hz) modulating gamma band activity (34-130 Hz). Furthermore, a significant number of hippocampal electrodes exhibited greater PAC during successful than unsuccessful encoding, with the gamma activity at these sites coupled to the trough of the slow-theta oscillation. These same conditions facilitate LTP in animal models, providing a possible mechanism of action for this effect in human memory. Uniquely in the hippocampus, phase preference during item encoding exhibited a biphasic pattern. Overall, our findings help translate between the patterns identified during basic memory tasks in animals and those present during complex human memory encoding. We discuss the unique properties of human hippocampal PAC and how our findings relate to influential theories of information processing based on theta-gamma interactions.
相位-振幅耦合(PAC)已被提出作为一种跨脑区协调信息处理的神经机制。在此,我们试图在人类形成新的情景记忆期间,对海马体以及颞叶和额叶皮质中的PAC进行特征描述。对56名接受神经外科手术的患者进行单词列表学习和回忆时进行的颅内记录显示,海马体存在显著的PAC,慢θ波活动(2.5 - 5赫兹)调制γ波段活动(34 - 130赫兹)。此外,相当数量的海马体电极在成功编码期间比未成功编码时表现出更强的PAC,这些部位的γ活动与慢θ振荡的波谷耦合。同样的条件在动物模型中促进长时程增强(LTP),为这种效应在人类记忆中的作用提供了一种可能的机制。在海马体中独特的是,项目编码期间的相位偏好呈现双相模式。总体而言,我们的研究结果有助于在动物基本记忆任务中识别的模式与复杂人类记忆编码期间出现的模式之间进行转换。我们讨论了人类海马体PAC的独特特性,以及我们的研究结果如何与基于θ-γ相互作用的有影响力的信息处理理论相关。