Rahaman Obaidur, Kalimeri Maria, Melchionna Simone, Hénin Jérôme, Sterpone Fabio
†Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France.
‡CNR-IPCF, Consiglio Nazionale delle Ricerche, Physics Dept., Univ. La Sapienza, P.le A. Moro 2, 00185, Rome, Italy.
J Phys Chem B. 2015 Jul 23;119(29):8939-49. doi: 10.1021/jp507571u. Epub 2014 Oct 15.
In this work, we address the question of whether the enhanced stability of thermophilic proteins has a direct connection with internal hydration. Our model systems are two homologous G domains of different stability: the mesophilic G domain of the elongation factor thermal unstable protein from E. coli and the hyperthermophilic G domain of the EF-1α protein from S. solfataricus. Using molecular dynamics simulation at the microsecond time scale, we show that both proteins host water molecules in internal cavities and that these molecules exchange with the external solution in the nanosecond time scale. The hydration free energy of these sites evaluated via extensive calculations is found to be favorable for both systems, with the hyperthermophilic protein offering a slightly more favorable environment to host water molecules. We estimate that, under ambient conditions, the free energy gain due to internal hydration is about 1.3 kcal/mol in favor of the hyperthermophilic variant. However, we also find that, at the high working temperature of the hyperthermophile, the cavities are rather dehydrated, meaning that under extreme conditions other molecular factors secure the stability of the protein. Interestingly, we detect a clear correlation between the hydration of internal cavities and the protein conformational landscape. The emerging picture is that internal hydration is an effective observable to probe the conformational landscape of proteins. In the specific context of our investigation, the analysis confirms that the hyperthermophilic G domain is characterized by multiple states and it has a more flexible structure than its mesophilic homologue.
在这项工作中,我们探讨嗜热蛋白增强的稳定性是否与内部水合作用有直接联系这一问题。我们的模型系统是两个稳定性不同的同源G结构域:来自大肠杆菌的延伸因子热不稳定蛋白的嗜温G结构域和来自嗜热栖热菌的EF-1α蛋白的超嗜热G结构域。通过微秒时间尺度的分子动力学模拟,我们表明这两种蛋白在内腔中都容纳水分子,并且这些分子在纳秒时间尺度上与外部溶液进行交换。通过大量计算评估的这些位点的水合自由能对两个系统来说都是有利的,超嗜热蛋白为容纳水分子提供了一个稍微更有利的环境。我们估计,在环境条件下,由于内部水合作用带来的自由能增益有利于超嗜热变体,约为1.3千卡/摩尔。然而,我们还发现,在超嗜热菌的高工作温度下,这些腔相当脱水,这意味着在极端条件下其他分子因素确保了蛋白质的稳定性。有趣的是,我们检测到内腔的水合作用与蛋白质构象景观之间存在明显的相关性。新出现的情况是,内部水合作用是探测蛋白质构象景观的一种有效的可观测指标。在我们研究的特定背景下,分析证实超嗜热G结构域具有多种状态的特征,并且其结构比嗜温同源物更灵活。