Ta Vinh-Thong, Giraud Rémi, Collins D Louis, Coupé Pierrick
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):105-12. doi: 10.1007/978-3-319-10443-0_14.
Automatic segmentation methods are important tools for quantitative analysis of magnetic resonance images. Recently, patch-based label fusion approaches demonstrated state-of-the-art segmentation accuracy. In this paper, we introduce a new patch-based method using the PatchMatch algorithm to perform segmentation of anatomical structures. Based on an Optimized PAtchMatch Label fusion (OPAL) strategy, the proposed method provides competitive segmentation accuracy in near real time. During our validation on hippocampus segmentation of 80 healthy subjects, OPAL was compared to several state-of-the-art methods. Results show that OPAL obtained the highest median Dice coefficient (89.3%) in less than 1 sec per subject. These results highlight the excellent performance of OPAL in terms of computation time and segmentation accuracy compared to recently published methods.
自动分割方法是磁共振图像定量分析的重要工具。最近,基于补丁的标签融合方法展现出了最先进的分割精度。在本文中,我们介绍一种使用PatchMatch算法进行解剖结构分割的新型基于补丁的方法。基于优化的补丁匹配标签融合(OPAL)策略,该方法能在近实时条件下提供具有竞争力的分割精度。在我们对80名健康受试者的海马体分割验证过程中,将OPAL与几种最先进的方法进行了比较。结果表明,OPAL在每位受试者不到1秒的时间内获得了最高的中位数骰子系数(89.3%)。这些结果突出了OPAL与最近发表的方法相比,在计算时间和分割精度方面的出色表现。