Suppr超能文献

基于非局部均值的腮腺高效描述符分割

Efficient Descriptor-Based Segmentation of Parotid Glands With Nonlocal Means.

作者信息

Wachinger Christian, Brennan Matthew, Sharp Greg C, Golland Polina

出版信息

IEEE Trans Biomed Eng. 2017 Jul;64(7):1492-1502. doi: 10.1109/TBME.2016.2603119. Epub 2016 Sep 16.

Abstract

OBJECTIVE

We introduce descriptor-based segmentation that extends existing patch-based methods by combining intensities, features, and location information. Since it is unclear which image features are best suited for patch selection, we perform a broad empirical study on a multitude of different features.

METHODS

We extend nonlocal means segmentation by including image features and location information. We search larger windows with an efficient nearest neighbor search based on kd-trees. We compare a large number of image features.

RESULTS

The best results were obtained for entropy image features, which have not yet been used for patch-based segmentation. We further show that searching larger image regions with an approximate nearest neighbor search and location information yields a significant improvement over the bounded nearest neighbor search traditionally employed in patch-based segmentation methods.

CONCLUSION

Features and location information significantly increase the segmentation accuracy. The best features highlight boundaries in the image.

SIGNIFICANCE

Our detailed analysis of several aspects of nonlocal means-based segmentation yields new insights about patch and neighborhood sizes together with the inclusion of location information. The presented approach advances the state-of-the-art in the segmentation of parotid glands for radiation therapy planning.

摘要

目的

我们引入基于描述符的分割方法,该方法通过结合强度、特征和位置信息扩展了现有的基于补丁的方法。由于尚不清楚哪些图像特征最适合补丁选择,我们对多种不同特征进行了广泛的实证研究。

方法

我们通过纳入图像特征和位置信息来扩展非局部均值分割。我们基于kd树使用高效的最近邻搜索来搜索更大的窗口。我们比较了大量的图像特征。

结果

对于尚未用于基于补丁分割的熵图像特征,获得了最佳结果。我们进一步表明,使用近似最近邻搜索和位置信息搜索更大的图像区域比基于补丁的分割方法中传统采用的有界最近邻搜索有显著改进。

结论

特征和位置信息显著提高了分割精度。最佳特征突出了图像中的边界。

意义

我们对基于非局部均值分割的几个方面进行的详细分析,得出了关于补丁和邻域大小以及位置信息纳入的新见解。所提出的方法推动了放射治疗计划中腮腺分割的技术水平。

相似文献

1
Efficient Descriptor-Based Segmentation of Parotid Glands With Nonlocal Means.基于非局部均值的腮腺高效描述符分割
IEEE Trans Biomed Eng. 2017 Jul;64(7):1492-1502. doi: 10.1109/TBME.2016.2603119. Epub 2016 Sep 16.
2
Contour-driven regression for label inference in atlas-based segmentation.基于图谱分割中用于标签推断的轮廓驱动回归
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):211-8. doi: 10.1007/978-3-642-40760-4_27.
4
Spine segmentation using articulated shape models.使用关节形状模型进行脊柱分割。
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):227-34. doi: 10.1007/978-3-540-85988-8_28.
9
Sparse patch based prostate segmentation in CT images.基于稀疏补丁的CT图像前列腺分割
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):385-92. doi: 10.1007/978-3-642-33454-2_48.

引用本文的文献

2
Keypoint Transfer for Fast Whole-Body Segmentation.关键点迁移的快速全身分割。
IEEE Trans Med Imaging. 2020 Feb;39(2):273-282. doi: 10.1109/TMI.2018.2851194. Epub 2018 Jun 27.
3

本文引用的文献

1
Scalable Nearest Neighbor Algorithms for High Dimensional Data.高维数据的可扩展最近邻算法。
IEEE Trans Pattern Anal Mach Intell. 2014 Nov;36(11):2227-40. doi: 10.1109/TPAMI.2014.2321376.
2
Contour-Driven Atlas-Based Segmentation.基于轮廓驱动图谱的分割
IEEE Trans Med Imaging. 2015 Dec;34(12):2492-505. doi: 10.1109/TMI.2015.2442753. Epub 2015 Jun 9.
3
Atlas-based under-segmentation.基于图谱的分割不足
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):315-22. doi: 10.1007/978-3-319-10404-1_40.
4
Optimized patchMatch for near real time and accurate label fusion.用于近实时和准确标签融合的优化PatchMatch算法
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):105-12. doi: 10.1007/978-3-319-10443-0_14.
8
Contour-driven regression for label inference in atlas-based segmentation.基于图谱分割中用于标签推断的轮廓驱动回归
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):211-8. doi: 10.1007/978-3-642-40760-4_27.
9
Spectral label fusion.光谱标签融合
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):410-7. doi: 10.1007/978-3-642-33454-2_51.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验