Price True, Wee Chong-Yaw, Gao Wei, Shen Dinggang
Med Image Comput Comput Assist Interv. 2014;17(Pt 3):177-84. doi: 10.1007/978-3-319-10443-0_23.
Characterization of disease using stationary resting-state functional connectivity (FC) has provided important hallmarks of abnormal brain activation in many domains. Recent studies of resting-state functional magnetic resonance imaging (fMRI), however, suggest there is a considerable amount of additional knowledge to be gained by investigating the variability in FC over the course of a scan. While a few studies have begun to explore the properties of dynamic FC for characterizing disease, the analysis of dynamic FC over multiple networks at multiple time scales has yet to be fully examined. In this study, we combine dynamic connectivity features in a multi-network, multi-scale approach to evaluate the method's potential in better classifying childhood autism. Specifically, from a set of group-level intrinsic connectivity networks (ICNs), we use sliding window correlations to compute intra-network connectivity on the subject level. We derive dynamic FC features for all ICNs over a large range of window sizes and then use a multiple kernel support vector machine (MK-SVM) model to combine a subset of these features for classification. We compare the performance our multi-network, dynamic approach to the best results obtained from single-network dynamic FC features and those obtained from both single- and multi-network static FC features. Our experiments show that integrating multiple networks on different dynamic scales has a clear superiority over these existing methods.
使用静息态功能连接(FC)对疾病进行特征描述,已在许多领域提供了大脑异常激活的重要标志。然而,最近关于静息态功能磁共振成像(fMRI)的研究表明,通过研究扫描过程中FC的变异性,还可以获得大量额外的知识。虽然一些研究已经开始探索动态FC在疾病特征描述方面的特性,但在多个时间尺度上对多个网络的动态FC分析尚未得到充分研究。在本研究中,我们采用多网络、多尺度方法结合动态连接特征,以评估该方法在更好地分类儿童自闭症方面的潜力。具体而言,从一组组水平的固有连接网络(ICN)中,我们使用滑动窗口相关性在个体水平上计算网络内连接性。我们在大范围的窗口大小上为所有ICN导出动态FC特征,然后使用多核支持向量机(MK-SVM)模型组合这些特征的一个子集进行分类。我们将我们的多网络动态方法的性能与从单网络动态FC特征以及从单网络和多网络静态FC特征获得的最佳结果进行比较。我们的实验表明,在不同动态尺度上整合多个网络比这些现有方法具有明显优势。