文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用机器学习方法识别靶向 tDCS-fMRI 实验中脑网络的参与。

Identifying the engagement of a brain network during a targeted tDCS-fMRI experiment using a machine learning approach.

机构信息

Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.

Institute of Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2023 Apr 12;19(4):e1011012. doi: 10.1371/journal.pcbi.1011012. eCollection 2023 Apr.


DOI:10.1371/journal.pcbi.1011012
PMID:37043484
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10124825/
Abstract

Transcranial direct current stimulation (tDCS) can noninvasively modulate behavior, cognition, and physiologic brain functions depending on polarity and dose of stimulation as well as montage of electrodes. Concurrent tDCS-fMRI presents a novel way to explore the parameter space of non-invasive brain stimulation and to inform the experimenter as well as the participant if a targeted brain region or a network of spatially separate brain regions has been engaged and modulated. We compared a multi-electrode (ME) with a single electrode (SE) montage and both active conditions with a no-stimulation (NS) control condition to assess the engagement of a brain network and the ability of different electrode montages to modulate network activity. The multi-electrode montage targeted nodal regions of the right Arcuate Fasciculus Network (AFN) with anodal electrodes placed over the skull position of the posterior superior temporal/middle temporal gyrus (STG/MTG), supramarginal gyrus (SMG), posterior inferior frontal gyrus (IFG) and a return cathodal electrode over the left supraorbital region. In comparison, the single electrode montage used only one anodal electrode over a nodal brain region of the AFN, but varied the location between STG/MTG, SMG, and posterior IFG for different participants. Whole-brain rs-fMRI was obtained approximately every three seconds. The tDCS-stimulator was turned on at 3 minutes after the scanning started. A 4D rs-fMRI data set was converted to dynamic functional connectivity (DFC) matrices using a set of ROI pairs belonging to the AFN as well as other unrelated brain networks. In this study, we evaluated the performance of five algorithms to classify the DFC matrices from the three conditions (ME, SE, NS) into three different categories. The highest accuracy of 0.92 was obtained for the classification of the ME condition using the K Nearest Neighbor (KNN) algorithm. In other words, applying the classification algorithm allowed us to identify the engagement of the AFN and the ME condition was the best montage to achieve such an engagement. The top 5 ROI pairs that made a major contribution to the classification of participant's rs-fMRI data were identified using model performance parameters; ROI pairs were mainly located within the right AFN. This proof-of-concept study using a classification algorithm approach can be expanded to create a near real-time feedback system at a participant level to detect the engagement and modulation of a brain network that spans multiple brain lobes.

摘要

经颅直流电刺激(tDCS)可以非侵入性地调节行为、认知和生理脑功能,具体取决于刺激的极性和剂量以及电极的排列方式。同时进行 tDCS-fMRI 为探索非侵入性脑刺激的参数空间提供了一种新方法,并为实验者和参与者提供信息,以确定目标脑区或空间分离的脑区网络是否被激活和调节。我们比较了多电极(ME)和单电极(SE)两种排列方式,以及两种激活状态与无刺激(NS)对照状态,以评估脑网络的激活情况以及不同电极排列方式调节网络活动的能力。多电极排列方式以阳极电极置于后上颞叶/中颞叶(STG/MTG)、缘上回(SMG)、后额下回(IFG)的颅骨位置,阴极返回电极置于左侧眶上区域,以靶向右侧弓状束网络(AFN)的节点区域。相比之下,单电极排列方式仅在 AFN 的一个节点脑区使用一个阳极电极,但针对不同的参与者,其位置在 STG/MTG、SMG 和后 IFG 之间变化。全脑 rs-fMRI 大约每三秒钟采集一次。tDCS 刺激器在扫描开始后 3 分钟打开。使用一组属于 AFN 以及其他不相关脑网络的 ROI 对,将 4D rs-fMRI 数据集转换为动态功能连接(DFC)矩阵。在这项研究中,我们评估了五种算法的性能,以将来自三个条件(ME、SE、NS)的 DFC 矩阵分类为三个不同类别。使用 K 最近邻(KNN)算法对 ME 条件进行分类,获得了最高的 0.92 准确率。换句话说,应用分类算法使我们能够识别 AFN 的激活,并且 ME 条件是实现这种激活的最佳排列方式。使用模型性能参数确定了对参与者 rs-fMRI 数据分类贡献最大的前 5 个 ROI 对;ROI 对主要位于右侧 AFN 内。这项使用分类算法方法的概念验证研究可以扩展到创建一个参与者级别的近实时反馈系统,以检测跨越多个脑叶的脑网络的激活和调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/f83c3acffa76/pcbi.1011012.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/e9c1d7572ead/pcbi.1011012.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/bb0ca426f358/pcbi.1011012.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/488e4385aaee/pcbi.1011012.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/dde7c5c800c8/pcbi.1011012.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/f83c3acffa76/pcbi.1011012.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/e9c1d7572ead/pcbi.1011012.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/bb0ca426f358/pcbi.1011012.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/488e4385aaee/pcbi.1011012.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/dde7c5c800c8/pcbi.1011012.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9711/10124825/f83c3acffa76/pcbi.1011012.g008.jpg

相似文献

[1]
Identifying the engagement of a brain network during a targeted tDCS-fMRI experiment using a machine learning approach.

PLoS Comput Biol. 2023-4

[2]
Testing assumptions on prefrontal transcranial direct current stimulation: Comparison of electrode montages using multimodal fMRI.

Brain Stimul. 2018-5-4

[3]
Effects of tDCS dose and electrode montage on regional cerebral blood flow and motor behavior.

Neuroimage. 2021-8-15

[4]
Multielectrode Network Stimulation (ME-NETS) demonstrated by concurrent tDCS and fMRI.

bioRxiv. 2023-6-14

[5]
Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia.

Brain Stimul. 2015-7-2

[6]
Can transcranial direct current stimulation improve range of motion and modulate pain perception in healthy individuals?

Neurosci Lett. 2019-5-31

[7]
Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation.

Hum Brain Mapp. 2018-10-30

[8]
How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications.

Brain Stimul. 2022

[9]
The effect of tDCS electrode montage on attention and working memory.

Neuropsychologia. 2023-1-28

[10]
Age-dependent effects of brain stimulation on network centrality.

Neuroimage. 2018-4-18

引用本文的文献

[1]
Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights.

BMC Neurol. 2024-9-28

[2]
Neuroanatomical Predictors of Transcranial Direct Current Stimulation (tDCS)-Induced Modifications in Neurocognitive Task Performance in Typically Developing Individuals.

J Neurosci. 2024-5-29

本文引用的文献

[1]
Efficacy of Transcranial Direct Current Stimulation (tDCS) on Balance and Gait in Multiple Sclerosis Patients: A Machine Learning Approach.

J Clin Med. 2022-6-17

[2]
Brain network modulation in Alzheimer's and frontotemporal dementia with transcranial electrical stimulation.

Neurobiol Aging. 2022-3

[3]
Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population.

Sci Rep. 2021-11-2

[4]
Effects of tDCS dose and electrode montage on regional cerebral blood flow and motor behavior.

Neuroimage. 2021-8-15

[5]
Examining the effects of transcranial direct current stimulation on human episodic memory with machine learning.

PLoS One. 2020

[6]
Machine learning and individual variability in electric field characteristics predict tDCS treatment response.

Brain Stimul. 2020

[7]
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.

BMC Genomics. 2020-1-2

[8]
Methodology for tDCS integration with fMRI.

Hum Brain Mapp. 2020-5

[9]
Machine learning in resting-state fMRI analysis.

Magn Reson Imaging. 2019-6-5

[10]
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery.

Nat Biomed Eng. 2018-10-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索