Bensmann Stefanie, Gaußmann Fabian, Lewin Martin, Wüppen Jochen, Nyga Sebastian, Janzen Christoph, Jungbluth Bernd, Taubner Thomas
Opt Express. 2014 Sep 22;22(19):22369-81. doi: 10.1364/OE.22.022369.
Scattering-type scanning near-field optical microscopy (SNOM) offers the possibility to analyze material properties like strain in crystals at the nanoscale. In this paper we introduce a SNOM setup employing a newly developed tunable broadband laser source with a covered spectral range from 9 µm to 16 µm. This setup allows for the first time optical analyses of the crystal structure of gallium nitride (GaN) at the nanometer scale by excitation of a near-field phonon resonance around 14.5 µm. On the example of an artificially induced stress field within a GaN wafer, we present a method for a 2D visualization of small deviations in the crystal structure, which allows for fast qualitative characterizations. Subsequently, the stress levels at chosen points were quantified by recording complex near-field spectra and correlating them with theoretical model calculations. Applied to the cross-section of a heteroepitaxially grown GaN wafer, we finally demonstrate the capability of our setup to analyze the relaxation of the crystal structure along the growth axis with a nanometer spatial resolution.
散射型扫描近场光学显微镜(SNOM)提供了在纳米尺度分析诸如晶体应变等材料特性的可能性。在本文中,我们介绍了一种采用新开发的可调谐宽带激光源的SNOM装置,其覆盖的光谱范围为9微米至16微米。该装置首次通过激发14.5微米左右的近场声子共振,实现了在纳米尺度对氮化镓(GaN)晶体结构的光学分析。以GaN晶片内人工诱导的应力场为例,我们提出了一种二维可视化晶体结构小偏差的方法,该方法可实现快速定性表征。随后,通过记录复近场光谱并将其与理论模型计算相关联,对选定位置的应力水平进行了量化。最后,将其应用于异质外延生长的GaN晶片的横截面,我们展示了该装置以纳米空间分辨率分析沿生长轴的晶体结构弛豫的能力。