Department of Chemistry, University of Nevada, Reno , Reno, Nevada 89557, United States.
J Am Chem Soc. 2014 Nov 12;136(45):16009-22. doi: 10.1021/ja5079514. Epub 2014 Nov 3.
Nickel-containing superoxide dismutase (NiSOD) is a mononuclear cysteinate-ligated nickel metalloenzyme that catalyzes the disproportionation of superoxide into dioxygen and hydrogen peroxide by cycling between Ni(II) and Ni(III) oxidation states. All of the ligating residues to nickel are found within the first six residues from the N-terminus, which has prompted several research groups to generate NiSOD metallopeptide-based mimics derived from the first several residues of the NiSOD sequence. To assess the viability of using these metallopeptide-based mimics (NiSOD maquettes) to probe the mechanism of SOD catalysis facilitated by NiSOD, we computationally explored the initial step of the O2(-) reduction mechanism catalyzed by the NiSOD maquette {Ni(II)(SOD(m1))} (SOD(m1) = HCDLP CGVYD PA). Herein we use spectroscopic (S K-edge X-ray absorption spectroscopy, electronic absorption spectroscopy, and circular dichroism spectroscopy) and computational techniques to derive the detailed active-site structure of {Ni(II)(SOD(m1))}. These studies suggest that the {Ni(II)(SOD(m1))} active-site possesses a Ni(II)-S(H(+))-Cys(6) moiety and at least one associated water molecule contained in a hydrogen-bonding interaction to the coordinated Cys(2) and Cys(6) sulfur atoms. A computationally derived mechanism for O2(-) reduction using the formulated active-site structure of {Ni(II)(SOD(m1))} suggests that O2(-) reduction takes place through an apparent initial outersphere hydrogen atom transfer (HAT) from the Ni(II)-S(H(+))-Cys(6) moiety to the O2(-) molecule. It is proposed that the water molecule aids in driving the reaction forward by lowering the Ni(II)-S(H(+))-Cys(6) pK(a). Such a mechanism is not possible in NiSOD itself for structural reasons. These results therefore strongly suggest that maquettes derived from the primary sequence of NiSOD are mechanistically distinct from NiSOD itself despite the similarities in the structure and physical properties of the metalloenzyme vs the NiSOD metallopeptide-based models.
镍结合超氧化物歧化酶(NiSOD)是一种单体半胱氨酸配位的镍金属酶,通过 Ni(II) 和 Ni(III) 氧化态之间的循环,催化超氧化物歧化为氧和过氧化氢。所有与镍配位的配体残基都位于 N 端前 6 个残基内,这促使几个研究小组生成了基于 NiSOD 序列前几个残基的 NiSOD 金属肽模拟物。为了评估使用这些金属肽模拟物(NiSOD 模型)来探测 NiSOD 催化的 SOD 催化机制的可行性,我们通过计算方法探索了 NiSOD 模型 {Ni(II)(SOD(m1))}(SOD(m1)=HCDLP CGVYD PA)催化的 O2(-)还原机制的初始步骤。在这里,我们使用光谱(S K 边缘 X 射线吸收光谱、电子吸收光谱和圆二色性光谱)和计算技术推导出 {Ni(II)(SOD(m1))} 的详细活性位点结构。这些研究表明,{Ni(II)(SOD(m1))} 的活性位点具有 Ni(II)-S(H(+))-Cys(6)部分,并且至少有一个与配位的 Cys(2)和 Cys(6)硫原子形成氢键的相关水分子。使用推导的 {Ni(II)(SOD(m1))} 的活性位点结构计算得出的 O2(-)还原机制表明,O2(-)还原通过 Ni(II)-S(H(+))-Cys(6)部分向 O2(-)分子的明显初始外层氢原子转移(HAT)发生。据推测,水分子通过降低 Ni(II)-S(H(+))-Cys(6)的 pK(a),有助于推动反应向前进行。由于结构原因,这种机制在 NiSOD 本身中是不可能的。因此,这些结果强烈表明,尽管金属酶与 NiSOD 金属肽模型在结构和物理性质上存在相似之处,但源自 NiSOD 一级序列的模型在机制上与 NiSOD 本身不同。