Shearer Jason, Dehestani Ahmad, Abanda Franklin
Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA.
Inorg Chem. 2008 Apr 7;47(7):2649-60. doi: 10.1021/ic7019878. Epub 2008 Mar 11.
Nickel superoxide dismutase (NiSOD) is a recently discovered metalloenzyme that catalyzes the disproportionation of O2(-) into O2 and H2O2. In its reduced state, the mononuclear Ni(II) ion is ligated by two cis-cysteinate sulfurs, an amine nitrogen (from the protein N-terminus), and an amide nitrogen (from the peptide backbone). Unlike many small molecule and metallopeptide-based NiN2S2 complexes, S-based oxygenation is not observed in NiSOD. Herein we explore the spectroscopic properties of a series of three Ni(II)N2S2 complexes (bisamine-ligated (bmmp-dmed)Ni(II), amine/amide-ligated (Ni(II)(BEAAM))(-), and bisamide-ligated (Ni(II)(emi))(2-)) with varying amine/amide ligation to determine the origin of the dioxygen stability of NiSOD. Ni L-edge X-ray absorption spectroscopy (XAS) demonstrates that there is a progression in ligand-field strength with (bmmp-dmed)Ni(II) having the weakest ligand field and (Ni(II)(emi))(2-)) having the strongest ligand field. Furthermore, these Ni L-edge XAS studies also show that all three complexes are highly covalent with (Ni(II)(BEEAM))(-) having the highest degree of metal-ligand covalency of the three compounds studied. S K-edge XAS also shows a high degree of Ni-S covalency in all three complexes. The electronic structures of the three complexes were probed using both hybrid-DFT and multiconfigurational SORCI calculations. These calculations demonstrate that the nucleophilic Ni(3d)/S(pi) HOMO of these NiN2S2 complexes progressively decreases in energy as the amide-nitrogens are replaced with amine nitrogens. This decrease in energy of the HOMO deactivates the Ni-center toward O2 reactivity. Thus, the Ni-S bond is protected from S-based oxygenation explaining the enhanced stability of the NiSOD active-site toward oxygenation by dioxygen.
镍超氧化物歧化酶(NiSOD)是一种最近发现的金属酶,它催化超氧阴离子(O2(*-))歧化为氧气(O2)和过氧化氢(H2O2)。在其还原状态下,单核Ni(II)离子由两个顺式半胱氨酸硫原子、一个胺基氮原子(来自蛋白质N端)和一个酰胺氮原子(来自肽主链)配位。与许多基于小分子和金属肽的NiN2S2配合物不同,在NiSOD中未观察到基于硫的氧化反应。在此,我们探索了一系列三种Ni(II)N2S2配合物(双胺配位的(bmmp-dmed)Ni(II)、胺/酰胺配位的(Ni(II)(BEAAM))(-)和双酰胺配位的(Ni(II)(emi))(2-))的光谱性质,这些配合物具有不同的胺/酰胺配位情况,以确定NiSOD中双氧稳定性的来源。Ni L边X射线吸收光谱(XAS)表明,配体场强度存在一个变化趋势,(bmmp-dmed)Ni(II)的配体场最弱,(Ni(II)(emi))(2-)的配体场最强。此外,这些Ni L边XAS研究还表明,所有三种配合物都具有高度的共价性,(Ni(II)(BEEAM))(-)在所研究的三种化合物中具有最高程度的金属-配体共价性。S K边XAS也表明所有三种配合物中都具有高度的Ni-S共价性。使用杂化密度泛函理论(hybrid-DFT)和多组态SORCI计算对这三种配合物的电子结构进行了探究。这些计算表明,随着酰胺氮原子被胺基氮原子取代,这些NiN2S2配合物的亲核Ni(3d)/S(π)*最高占据分子轨道(HOMO)的能量逐渐降低。HOMO能量的这种降低使Ni中心对O2的反应性失活。因此,Ni-S键受到保护,不会发生基于硫的氧化反应,这就解释了NiSOD活性位点对双氧氧化反应增强的稳定性。