Suppr超能文献

将计算资源纳入癌症研究项目。

Incorporating computational resources in a cancer research program.

作者信息

Woods Nicholas T, Jhuraney Ankita, Monteiro Alvaro N A

机构信息

Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.

出版信息

Hum Genet. 2015 May;134(5):467-78. doi: 10.1007/s00439-014-1496-3. Epub 2014 Oct 17.

Abstract

Recent technological advances have transformed cancer genetics research. These advances have served as the basis for the generation of a number of richly annotated datasets relevant to the cancer geneticist. In addition, many of these technologies are now within reach of smaller laboratories to answer specific biological questions. Thus, one of the most pressing issues facing an experimental cancer biology research program in genetics is incorporating data from multiple sources to annotate, visualize, and analyze the system under study. Fortunately, there are several computational resources to aid in this process. However, a significant effort is required to adapt a molecular biology-based research program to take advantage of these datasets. Here, we discuss the lessons learned in our laboratory and share several recommendations to make this transition effective. This article is not meant to be a comprehensive evaluation of all the available resources, but rather highlight those that we have incorporated into our laboratory and how to choose the most appropriate ones for your research program.

摘要

最近的技术进步改变了癌症遗传学研究。这些进展为生成许多与癌症遗传学家相关的注释丰富的数据集奠定了基础。此外,现在许多此类技术小型实验室也能够使用,以回答特定的生物学问题。因此,遗传学领域的实验性癌症生物学研究项目面临的最紧迫问题之一是整合来自多个来源的数据,以注释、可视化和分析所研究的系统。幸运的是,有几种计算资源可助力这一过程。然而,需要付出巨大努力来调整基于分子生物学的研究项目,以利用这些数据集。在此,我们讨论在我们实验室吸取的经验教训,并分享一些使这一转变有效的建议。本文并非旨在全面评估所有可用资源,而是重点介绍我们已纳入实验室的资源,以及如何为您的研究项目选择最合适的资源。

相似文献

1
Incorporating computational resources in a cancer research program.
Hum Genet. 2015 May;134(5):467-78. doi: 10.1007/s00439-014-1496-3. Epub 2014 Oct 17.
2
Integrative data mining in systems biology: from text to network mining.
Artif Intell Med. 2007 Oct;41(2):83-6. doi: 10.1016/j.artmed.2007.08.001. Epub 2007 Sep 20.
3
Systems biology of cancer biomarker detection.
Cancer Biomark. 2013;13(4):201-13. doi: 10.3233/CBM-130363.
4
Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review.
Biomolecules. 2021 Aug 20;11(8):1245. doi: 10.3390/biom11081245.
5
Focus issue: series on computational and systems biology.
Sci Signal. 2011 Sep 6;4(189):eg8. doi: 10.1126/scisignal.2002478.
6
[Exploration of systems medicine in the 21st century].
Zhonghua Yi Xue Za Zhi. 2007 Aug 21;87(31):2172-5.
7
CANCERTOOL: A Visualization and Representation Interface to Exploit Cancer Datasets.
Cancer Res. 2018 Nov 1;78(21):6320-6328. doi: 10.1158/0008-5472.CAN-18-1669. Epub 2018 Sep 19.
8
Quick tips for creating effective and impactful biological pathways using the Systems Biology Graphical Notation.
PLoS Comput Biol. 2018 Feb 15;14(2):e1005740. doi: 10.1371/journal.pcbi.1005740. eCollection 2018 Feb.
9
Computational Methods in Systems Biology.
Biosystems. 2016 Nov;149:1-2. doi: 10.1016/j.biosystems.2016.10.006.
10
Trends in computational biology—2010.
Nat Biotechnol. 2011 Jan;29(1):45-9. doi: 10.1038/nbt.1747.

引用本文的文献

1
Enhancing research informatics core user satisfaction through agile practices.
JAMIA Open. 2021 Nov 30;4(4):ooab103. doi: 10.1093/jamiaopen/ooab103. eCollection 2021 Oct.

本文引用的文献

1
Coming full circle-from endless complexity to simplicity and back again.
Cell. 2014 Mar 27;157(1):267-71. doi: 10.1016/j.cell.2014.03.004.
2
Ten simple rules for effective computational research.
PLoS Comput Biol. 2014 Mar 27;10(3):e1003506. doi: 10.1371/journal.pcbi.1003506. eCollection 2014 Mar.
3
Provenance in bioinformatics workflows.
BMC Bioinformatics. 2013;14 Suppl 11(Suppl 11):S6. doi: 10.1186/1471-2105-14-S11-S6. Epub 2013 Nov 4.
4
Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1.
Mol Syst Biol. 2013 Dec 22;9:713. doi: 10.1002/msb.201304750. Print 2013.
7
OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes.
Bioinformatics. 2013 Sep 15;29(18):2238-44. doi: 10.1093/bioinformatics/btt395. Epub 2013 Jul 24.
8
Mutational heterogeneity in cancer and the search for new cancer-associated genes.
Nature. 2013 Jul 11;499(7457):214-218. doi: 10.1038/nature12213. Epub 2013 Jun 16.
10
GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer.
Nat Genet. 2013 Apr;45(4):362-70, 370e1-2. doi: 10.1038/ng.2564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验