Bethuyne Jonas, De Gieter Steven, Zwaenepoel Olivier, Garcia-Pino Abel, Durinck Kaat, Verhelle Adriaan, Hassanzadeh-Ghassabeh Gholamreza, Speleman Frank, Loris Remy, Gettemans Jan
Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussel, Belgium.
Nucleic Acids Res. 2014 Nov 10;42(20):12928-38. doi: 10.1093/nar/gku962. Epub 2014 Oct 16.
The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds 'structural' mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations.
p53转录因子在基因组完整性方面发挥着重要作用。为执行此任务,p53调节促进各种细胞结果(包括细胞周期停滞、凋亡或衰老)的基因转录。由于众多机制,例如p53的翻译后修饰和(非)共价p53结合伴侣,影响p53转录程序,这种活性的精确调节仍然难以捉摸。我们开发了一种新型的、非侵入性工具来操纵内源性p53。针对p53的DNA结合域产生的纳米抗体(Nb)使我们能够以高度特异性分别靶向野生型和突变型p53。Nb3优先结合“结构”突变型p53,即R175H和R282W,而另一种但不同的纳米抗体Nb139则结合突变型和野生型p53。p53 DNA结合域与Nb139复合物的共晶体结构(分辨率为1.9 Å)表明,Nb139在与DNA结合表面相对的位置结合。此外,我们使用构象特异性p53抗体免疫沉淀、戊二醛交联测定和染色质免疫沉淀证明,Nb139不会干扰p53 DNA结合域的功能结构。在功能上,Nb139与p53的结合使我们能够干扰p53靶基因的反式激活。我们提出,转录共激活因子募集减少或选定的转录后修饰调节可以解释这些观察结果。