Suppr超能文献

有向无环图中混杂因素的图形表示。

Graphical presentation of confounding in directed acyclic graphs.

机构信息

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Nephrol Dial Transplant. 2015 Sep;30(9):1418-23. doi: 10.1093/ndt/gfu325. Epub 2014 Oct 16.

Abstract

Since confounding obscures the real effect of the exposure, it is important to adequately address confounding for making valid causal inferences from observational data. Directed acyclic graphs (DAGs) are visual representations of causal assumptions that are increasingly used in modern epidemiology. They can help to identify the presence of confounding for the causal question at hand. This structured approach serves as a visual aid in the scientific discussion by making underlying relations explicit. This article explains the basic concepts of DAGs and provides examples in the field of nephrology with and without presence of confounding. Ultimately, these examples will show that DAGs can be preferable to the traditional methods to identify sources of confounding, especially in complex research questions.

摘要

由于混杂因素会掩盖暴露的真实效果,因此在从观察性数据中得出有效的因果推论时,充分解决混杂因素非常重要。有向无环图(DAG)是因果假设的可视化表示,在现代流行病学中越来越多地使用。它们可以帮助确定手头因果问题是否存在混杂。这种结构化方法通过使潜在关系显式化,为科学讨论提供了一种视觉辅助。本文解释了 DAG 的基本概念,并提供了肾脏病学领域存在和不存在混杂因素的示例。最终,这些示例将表明,DAG 可以优于传统方法来识别混杂来源,尤其是在复杂的研究问题中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验