Suppr超能文献

含噪声高维数据的稀疏主成分分析的极小极大界

MINIMAX BOUNDS FOR SPARSE PCA WITH NOISY HIGH-DIMENSIONAL DATA.

作者信息

Birnbaum Aharon, Johnstone Iain M, Nadler Boaz, Paul Debashis

机构信息

School of Computer Science and Engineering Hebrew University of Jerusalem The Edmond J. Safra Campus Jerusalem, 91904 Israel

Department of Statistics Stanford University Stanford, California 94305 USA

出版信息

Ann Stat. 2013 Jun;41(3):1055-1084. doi: 10.1214/12-AOS1014.

Abstract

We study the problem of estimating the leading eigenvectors of a high-dimensional population covariance matrix based on independent Gaussian observations. We establish a lower bound on the minimax risk of estimators under the loss, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors. The lower bound on the risk points to the existence of different regimes of sparsity of the eigenvectors. We also propose a new method for estimating the eigenvectors by a two-stage coordinate selection scheme.

摘要

我们研究基于独立高斯观测值估计高维总体协方差矩阵的主特征向量的问题。在总体特征向量的各种稀疏模型下,当维度和样本量联合趋于无穷时,我们建立了估计量在该损失下的极小极大风险的下界。风险的下界表明特征向量存在不同的稀疏模式。我们还提出了一种通过两阶段坐标选择方案来估计特征向量的新方法。

相似文献

2
Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices.稀疏尖峰协方差矩阵的最优估计与秩检测
Probab Theory Relat Fields. 2015 Apr 1;161(3-4):781-815. doi: 10.1007/s00440-014-0562-z.
5
PCA in High Dimensions: An orientation.高维主成分分析:一种导向
Proc IEEE Inst Electr Electron Eng. 2018 Aug;106(8):1277-1292. doi: 10.1109/JPROC.2018.2846730. Epub 2018 Jul 18.
9
Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA).来自特征值稀疏主成分分析(EESPCA)的特征向量。
J Comput Graph Stat. 2022;31(2):486-501. doi: 10.1080/10618600.2021.1987254. Epub 2021 Nov 12.
10
Minimax Estimation of Functionals of Discrete Distributions.离散分布泛函的极小极大估计
IEEE Trans Inf Theory. 2015 May;61(5):2835-2885. doi: 10.1109/tit.2015.2412945. Epub 2015 Mar 13.

引用本文的文献

1
A Class of Structured High-Dimensional Dynamic Covariance Matrices.一类结构化高维动态协方差矩阵
Commun Math Stat. 2025 Apr;13(2):371-401. doi: 10.1007/s40304-022-00321-7. Epub 2023 Mar 14.
4
Robust Covariance Estimation for Approximate Factor Models.近似因子模型的稳健协方差估计
J Econom. 2019 Jan;208(1):5-22. doi: 10.1016/j.jeconom.2018.09.003. Epub 2018 Oct 6.
5
PCA in High Dimensions: An orientation.高维主成分分析:一种导向
Proc IEEE Inst Electr Electron Eng. 2018 Aug;106(8):1277-1292. doi: 10.1109/JPROC.2018.2846730. Epub 2018 Jul 18.
6
LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS.通过椭圆因子模型进行大协方差估计
Ann Stat. 2018 Aug;46(4):1383-1414. doi: 10.1214/17-AOS1588. Epub 2018 Jun 27.
9
Principal component analysis: a review and recent developments.主成分分析:综述与最新进展
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202. doi: 10.1098/rsta.2015.0202.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验