Knogler Laura D, Drapeau Pierre
Departments of Pathology and Cell Biology and Neuroscience, Centre hospitalier de l'Université de Montréal Research Centre and Le Groupe de Recherche sur le Système Nerveux Central, Université de Montréal Montréal, QC, Canada.
Front Neural Circuits. 2014 Sep 30;8:121. doi: 10.3389/fncir.2014.00121. eCollection 2014.
In all but the simplest monosynaptic reflex arcs, sensory stimuli are encoded by sensory neurons that transmit a signal via sensory interneurons to downstream partners in order to elicit a response. In the embryonic zebrafish (Danio rerio), cutaneous Rohon-Beard (RB) sensory neurons fire in response to mechanical stimuli and excite downstream glutamatergic commissural primary ascending (CoPA) interneurons to produce a flexion response contralateral to the site of stimulus. In the absence of sensory stimuli, zebrafish spinal locomotor circuits are spontaneously active during development due to pacemaker activity resulting in repetitive coiling of the trunk. Self-generated movement must therefore be distinguishable from external stimuli in order to ensure the appropriate activation of touch reflexes. Here, we recorded from CoPAs during spontaneous and evoked fictive motor behaviors in order to examine how responses to self-movement are gated in sensory interneurons. During spontaneous coiling, CoPAs received glycinergic inputs coincident with contralateral flexions that shunted firing for the duration of the coiling event. Shunting inactivation of CoPAs was caused by a slowly deactivating chloride conductance that resulted in lowered membrane resistance and increased action potential threshold. During spontaneous burst swimming, which develops later, CoPAs received glycinergic inputs that arrived in phase with excitation to ipsilateral motoneurons and provided persistent shunting. During a touch stimulus, short latency glutamatergic inputs produced cationic currents through AMPA receptors that drove a single, large amplitude action potential in the CoPA before shunting inhibition began, providing a brief window for the activation of downstream neurons. We compared the properties of CoPAs to those of other spinal neurons and propose that glycinergic signaling onto CoPAs acts as a corollary discharge signal for reflex inhibition during movement.
在所有除最简单的单突触反射弧之外的反射弧中,感觉刺激由感觉神经元进行编码,这些感觉神经元通过感觉中间神经元将信号传递给下游的神经元伙伴,以引发反应。在斑马鱼胚胎(Danio rerio)中,皮肤罗霍恩 - 比尔(RB)感觉神经元对机械刺激产生反应并兴奋下游的谷氨酸能连合初级上行(CoPA)中间神经元,以产生与刺激部位对侧的屈曲反应。在没有感觉刺激的情况下,斑马鱼脊髓运动回路在发育过程中由于起搏器活动而自发活动,导致躯干反复卷曲。因此,自我产生的运动必须与外部刺激区分开来,以确保触觉反射的适当激活。在这里,我们在自发和诱发的虚拟运动行为期间记录CoPA的活动,以研究感觉中间神经元如何对自我运动的反应进行门控。在自发卷曲期间,CoPA接收到与对侧屈曲同时出现的甘氨酸能输入,这些输入在卷曲事件持续期间分流放电。CoPA的分流失活是由一种缓慢失活的氯离子电导引起的,该电导导致膜电阻降低和动作电位阈值增加。在稍后发育的自发爆发式游泳期间,CoPA接收到与同侧运动神经元兴奋同步到达的甘氨酸能输入,并提供持续的分流。在触觉刺激期间,短潜伏期的谷氨酸能输入通过AMPA受体产生阳离子电流,在分流抑制开始之前在CoPA中驱动单个大振幅动作电位,为下游神经元的激活提供了一个短暂的窗口。我们将CoPA的特性与其他脊髓神经元的特性进行了比较,并提出作用于CoPA的甘氨酸能信号传导在运动期间作为反射抑制的伴随放电信号。