Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Phys Rev Lett. 2014 Oct 3;113(14):148102. doi: 10.1103/PhysRevLett.113.148102. Epub 2014 Oct 1.
Single and collective cellular oscillations driven by the actomyosin cytoskeleton have been observed in numerous biological systems. Here, we propose that these oscillations can be accounted for by a generic oscillator model of a material turning over and contracting against an elastic element. As an example, we show that during dorsal closure of the Drosophila embryo, experimentally observed changes in actomyosin concentration and oscillatory cell shape changes can, indeed, be captured by the dynamic equations studied here. We also investigate the collective dynamics of an ensemble of such contractile elements and show that the relative contribution of viscous and friction losses yields different regimes of collective oscillations. Taking into account the diffusion of force-producing molecules between contractile elements, our theoretical framework predicts the appearance of traveling waves, resembling the propagation of actomyosin waves observed during morphogenesis.
单个和集体细胞的振动是由肌动球蛋白细胞骨架驱动的,在许多生物系统中都有观察到。在这里,我们提出,这些振动可以用一个通用的振荡器模型来解释,该模型描述了一种物质的翻转和收缩对抗弹性元件的过程。作为一个例子,我们表明,在果蝇胚胎的背侧闭合过程中,实验观察到的肌动球蛋白浓度的变化和细胞形状的振动变化,可以被这里研究的动力学方程所捕获。我们还研究了这样的收缩元件的集体动力学,并表明粘性和摩擦损耗的相对贡献产生了不同的集体振动模式。考虑到产生力的分子在收缩元件之间的扩散,我们的理论框架预测了行波的出现,类似于在形态发生过程中观察到的肌动球蛋白波的传播。