Suppr超能文献

功能性蛋白质的能量景观具有内在风险。

Energy landscapes of functional proteins are inherently risky.

作者信息

Gershenson Anne, Gierasch Lila M, Pastore Annalisa, Radford Sheena E

机构信息

Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.

1] Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA. [2] Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA.

出版信息

Nat Chem Biol. 2014 Nov;10(11):884-91. doi: 10.1038/nchembio.1670.

Abstract

Evolutionary pressure for protein function leads to unavoidable sampling of conformational states that are at risk of misfolding and aggregation. The resulting tension between functional requirements and the risk of misfolding and/or aggregation in the evolution of proteins is becoming more and more apparent. One outcome of this tension is sensitivity to mutation, in which only subtle changes in sequence that may be functionally advantageous can tip the delicate balance toward protein aggregation. Similarly, increasing the concentration of aggregation-prone species by reducing the ability to control protein levels or compromising protein folding capacity engenders increased risk of aggregation and disease. In this Perspective, we describe examples that epitomize the tension between protein functional energy landscapes and aggregation risk. Each case illustrates how the energy landscapes for the at-risk proteins are sculpted to enable them to perform their functions and how the risks of aggregation are minimized under cellular conditions using a variety of compensatory mechanisms.

摘要

蛋白质功能的进化压力导致不可避免地对有错误折叠和聚集风险的构象状态进行抽样。在蛋白质进化过程中,功能需求与错误折叠和/或聚集风险之间产生的矛盾日益明显。这种矛盾的一个结果是对突变敏感,即序列中只有细微的、可能具有功能优势的变化,就可能使脆弱的平衡朝着蛋白质聚集的方向倾斜。同样,通过降低控制蛋白质水平的能力或损害蛋白质折叠能力来增加易于聚集的物种的浓度,会增加聚集和疾病的风险。在这篇观点文章中,我们描述了一些典型例子,这些例子体现了蛋白质功能能量景观与聚集风险之间的矛盾。每个案例都说明了有风险的蛋白质的能量景观是如何塑造的,以使它们能够发挥其功能,以及在细胞条件下如何利用各种补偿机制将聚集风险降至最低。

相似文献

2
Protein-folding landscapes in multichain systems.多链系统中的蛋白质折叠景观。
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11692-7. doi: 10.1073/pnas.0505342102. Epub 2005 Aug 4.
6
Using the folding landscapes of proteins to understand protein function.利用蛋白质的折叠景观来理解蛋白质功能。
Curr Opin Struct Biol. 2016 Feb;36:67-74. doi: 10.1016/j.sbi.2016.01.001. Epub 2016 Jan 24.
8
Principles of protein folding, misfolding and aggregation.蛋白质折叠、错误折叠和聚集的原理。
Semin Cell Dev Biol. 2004 Feb;15(1):3-16. doi: 10.1016/j.semcdb.2003.12.008.
10
Solubis: optimize your protein.索卢比斯:优化您的蛋白质。
Bioinformatics. 2015 Aug 1;31(15):2580-2. doi: 10.1093/bioinformatics/btv162. Epub 2015 Mar 19.

引用本文的文献

1
Membrane Charge Drives the Aggregation of TDP-43 Pathological Fragments.膜电荷驱动TDP-43病理片段的聚集。
J Am Chem Soc. 2025 Apr 23;147(16):13577-13591. doi: 10.1021/jacs.5c00594. Epub 2025 Apr 8.
4
Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders.神经退行性疾病中TDP-43错误折叠的构象之谜
ACS Omega. 2024 Sep 20;9(39):40286-40297. doi: 10.1021/acsomega.4c04119. eCollection 2024 Oct 1.
10
Protein quality control of -methyl-D-aspartate receptors.N-甲基-D-天冬氨酸受体的蛋白质质量控制
Front Cell Neurosci. 2022 Jul 22;16:907560. doi: 10.3389/fncel.2022.907560. eCollection 2022.

本文引用的文献

3
The robustness and innovability of protein folds.蛋白质折叠的稳健性与创新性。
Curr Opin Struct Biol. 2014 Jun;26:131-8. doi: 10.1016/j.sbi.2014.06.007. Epub 2014 Jul 17.
5
Principles and engineering of antibody folding and assembly.抗体折叠与组装的原理及工程学
Biochim Biophys Acta. 2014 Nov;1844(11):2024-2031. doi: 10.1016/j.bbapap.2014.06.004. Epub 2014 Jun 13.
8
The ensemble nature of allostery.变构的整体性。
Nature. 2014 Apr 17;508(7496):331-9. doi: 10.1038/nature13001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验