Suppr超能文献

奠基者群体及其杂交后代上位性方差分量和遗传力的估计

Estimation of epistatic variance components and heritability in founder populations and crosses.

作者信息

Young Alexander I, Durbin Richard

机构信息

Wellcome Trust Centre For Human Genetics, Oxford, OX3 7BN, United Kingdom

Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom.

出版信息

Genetics. 2014 Dec;198(4):1405-16. doi: 10.1534/genetics.114.170795. Epub 2014 Oct 17.

Abstract

Genetic association studies have explained only a small proportion of the estimated heritability of complex traits, leaving the remaining heritability "missing." Genetic interactions have been proposed as an explanation for this, because they lead to overestimates of the heritability and are hard to detect. Whether this explanation is true depends on the proportion of variance attributable to genetic interactions, which is difficult to measure in outbred populations. Founder populations exhibit a greater range of kinship than outbred populations, which helps in fitting the epistatic variance. We extend classic theory to founder populations, giving the covariance between individuals due to epistasis of any order. We recover the classic theory as a limit, and we derive a recently proposed estimator of the narrow sense heritability as a corollary. We extend the variance decomposition to include dominance. We show in simulations that it would be possible to estimate the variance from pairwise interactions with samples of a few thousand from strongly bottlenecked human founder populations, and we provide an analytical approximation of the standard error. Applying these methods to 46 traits measured in a yeast (Saccharomyces cerevisiae) cross, we estimate that pairwise interactions explain 10% of the phenotypic variance on average and that third- and higher-order interactions explain 14% of the phenotypic variance on average. We search for third-order interactions, discovering an interaction that is shared between two traits. Our methods will be relevant to future studies of epistatic variance in founder populations and crosses.

摘要

基因关联研究仅解释了复杂性状估计遗传力的一小部分,其余的遗传力则“缺失”了。有人提出基因相互作用来解释这一现象,因为它们会导致遗传力的高估且难以检测。这种解释是否正确取决于可归因于基因相互作用的方差比例,而这在远交群体中很难测量。奠基者群体比远交群体表现出更大范围的亲缘关系,这有助于拟合上位性方差。我们将经典理论扩展到奠基者群体,给出了由于任意阶上位性导致的个体间协方差。我们将经典理论作为一种极限情况推导出来,并且作为推论得到了最近提出的狭义遗传力估计量。我们将方差分解扩展到包括显性。我们在模拟中表明,利用来自严重瓶颈化的人类奠基者群体的几千个样本,通过成对相互作用来估计方差是可行的,并且我们提供了标准误差的解析近似值。将这些方法应用于酵母(酿酒酵母)杂交中测量的46个性状,我们估计成对相互作用平均解释了10%的表型方差,三阶及更高阶相互作用平均解释了14%的表型方差。我们搜索三阶相互作用,发现了两个性状之间共享的一种相互作用。我们的方法将与未来关于奠基者群体和杂交中上位性方差的研究相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd9/4256760/17c7416f381c/1405fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验