Suppr超能文献

Effect of hindlimb immobilization and recovery on compensatory hypertrophied rat plantaris muscle.

作者信息

Ianuzzo C D, Blank S, Crassweller A, Spalding J, Hamilton N, Dabrowski B, Rooks N

机构信息

Department of Biology, York University, North York, Ontario, Canada.

出版信息

Mol Cell Biochem. 1989 Oct 5;90(1):57-68. doi: 10.1007/BF00225221.

Abstract

Compensatory hypertrophy of the rat plantaris muscle (PLT) was induced by ipsilateral gastrocnemius muscle ablation. Following 8 weeks (wks) of hypertrophy, hindlimbs were cast immobilized (HI) for 4 weeks after which weight bearing was unrestricted for 8 wks (recovery). Compensatory hypertrophy increased PLT wet weight/body weight ratio (83%), muscle fiber cross-sectional areas (1.5 to 2 fold), and the percent of slow oxidative (%SO) fibers (2 fold) in the experimental compared to the contralateral sham control muscle. PLT protein content and maximal activities of phosphofructokinase (PFK), mitochondrial glycerol phosphate dehydrogenase, and succinate dehydrogenase were unaltered with muscle hypertrophy. HI produced significant decreases in PFK activity (50%) and muscle fiber cross-sectional areas (50%) but did not significantly change the histochemical myofibrillar ATPase profile. Following remobilization, muscle weight/body weight ratio and maximal enzyme activities recovered to that of aged matched controls. Muscle fiber areas returned to pre-immobilization sizes but were approximately 25% smaller than aged matched control hypertrophy muscles. The %SO fibers in the hypertrophied muscle remained higher than controls but did not return to pre-immobilization values. These results indicate that biochemical and histochemical characteristics of hypertrophied rat PLT recover from HI during 8 wks of normal weight bearing similar to that of normal control muscle. However, the recovery time period was insufficient to allow complete compensation of fiber size to that of the age-matched control animals.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验