文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一项关于四个平行沼气反应器中微生物群落的宏基因组学研究。

A metagenomic study of the microbial communities in four parallel biogas reactors.

机构信息

Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Frederik A. Dahls vei 20, 1432 Ås ᅟ, Norway.

Department of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424 Oslo, Norway.

出版信息

Biotechnol Biofuels. 2014 Oct 14;7(1):146. doi: 10.1186/s13068-014-0146-2. eCollection 2014.


DOI:10.1186/s13068-014-0146-2
PMID:25328537
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4200192/
Abstract

BACKGROUND: Biogas is a renewable energy carrier which is used for heat and power production or, in the form of purified methane, as a vehicle fuel. The formation of methane from organic materials is carried out by a mixed microbial community under anaerobic conditions. However, details about the microbes involved and their function are limited. In this study we compare the metagenomes of four parallel biogas reactors digesting a protein-rich substrate, relate microbiology to biogas performance, and observe differences in these reactors' microbial communities compared to the original inoculum culture. RESULTS: The biogas process performance during the startup phase of four parallel continuous stirred tank reactors (designated R1, R2, R3, and R4) co-digesting fish waste and cow manure was studied. The microbial composition of the inoculum (day 0) and the four reactors at day 59 was studied and compared using 454 FLX Titanium pyrosequencing. In the inoculum and the reactor samples, the Bacteria Clostridium and Syntrophomonas were highly abundant, and the dominating methanogen was the hydrogenotrophic Methanoculleus. Syntrophic prokaryotes frequently found in biogas reactors with high concentrations of ammonium and volatile fatty acids were detected in all samples. The species Candidatus Cloacimonas acidaminovorans of the candidate phylum Cloacimonetes (WWE1) increased in all reactors and was the dominating bacterium at day 59. In particular, this bacterium showed a very high abundance in R1, which distinguished this reactor significantly from the other reactors in terms of microbial composition. Methane production and the reactor slurry characteristics were monitored in the digestion period. Generally all four reactors operated stably and showed rather similar characteristics. The average methane production in the reactors varied between 0.278 and 0.296 L gVS(-1), with the lowest production in R1. CONCLUSIONS: This study showed that four parallel reactors co-digesting manure and fish waste silage operated stably during a startup phase. Several important Archaea and Bacteria degrading the protein-rich substrate were identified. In particular, microorganisms involved in syntrophic methane production seemed to be important. The detailed characterization of the microbial communities presented in this work may be useful for the operation of biogas plants degrading substrates with high concentrations of proteins.

摘要

背景:沼气是一种可再生能源载体,可用于热能和动力生产,或以净化甲烷的形式作为车辆燃料。在厌氧条件下,由混合微生物群落将有机物质转化为甲烷。然而,有关涉及的微生物及其功能的详细信息有限。在这项研究中,我们比较了四个平行的沼气反应器消化富含蛋白质的底物的宏基因组,将微生物学与沼气性能相关联,并观察到这些反应器的微生物群落与原始接种物培养物相比存在差异。

结果:研究了四个平行连续搅拌罐反应器(分别命名为 R1、R2、R3 和 R4)在共消化鱼废物和牛粪便的启动阶段的沼气工艺性能。使用 454 FLX Titanium 焦磷酸测序研究了接种物(第 0 天)和第 59 天的四个反应器的微生物组成,并进行了比较。在接种物和反应器样品中,细菌梭菌属和互营单胞菌属高度丰富,优势产甲烷菌是产氢甲烷菌甲烷微菌属。在所有样品中均检测到经常在含有高浓度铵和挥发性脂肪酸的沼气反应器中发现的共生原核生物。候选门 Cloacimonetes(WWE1)的候选属 Cloacimonas acidaminovorans 增加了所有反应器,并在第 59 天成为主要细菌。特别是,这种细菌在 R1 中的丰度非常高,这使得该反应器在微生物组成方面与其他反应器明显不同。在消化期间监测了甲烷产生和反应器浆液特性。一般来说,所有四个反应器都稳定运行,表现出相当相似的特征。反应器中甲烷的平均产量在 0.278 和 0.296 L gVS(-1) 之间变化,R1 中的产量最低。

结论:本研究表明,四个共消化粪便和鱼废料青贮的平行反应器在启动阶段稳定运行。确定了几种降解富含蛋白质底物的重要古菌和细菌。特别是,参与协同产甲烷的微生物似乎很重要。本工作中提出的微生物群落的详细特征可能对降解高浓度蛋白质底物的沼气厂的运行有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/b7cadcc03266/13068_2014_146_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/46d63eb46bd8/13068_2014_146_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/caff94aa0434/13068_2014_146_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/9ac14043823d/13068_2014_146_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/857c09d2ac22/13068_2014_146_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/cbae4774ed85/13068_2014_146_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/b15b945ca1ae/13068_2014_146_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/d7752c4d816f/13068_2014_146_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/1d7c0c92cb2d/13068_2014_146_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/100646e4578c/13068_2014_146_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/b7cadcc03266/13068_2014_146_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/46d63eb46bd8/13068_2014_146_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/caff94aa0434/13068_2014_146_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/9ac14043823d/13068_2014_146_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/857c09d2ac22/13068_2014_146_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/cbae4774ed85/13068_2014_146_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/b15b945ca1ae/13068_2014_146_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/d7752c4d816f/13068_2014_146_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/1d7c0c92cb2d/13068_2014_146_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/100646e4578c/13068_2014_146_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af8/4200192/b7cadcc03266/13068_2014_146_Fig10_HTML.jpg

相似文献

[1]
A metagenomic study of the microbial communities in four parallel biogas reactors.

Biotechnol Biofuels. 2014-10-14

[2]
Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production.

Waste Manag. 2014-5-10

[3]
Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

Appl Microbiol Biotechnol. 2016-1

[4]
Upflow anaerobic sludge blanket reactor--a review.

Indian J Environ Health. 2001-4

[5]
Microbial granules on reactors performance during organic butyrate digestion: clean production.

Crit Rev Biotechnol. 2023-12

[6]
Microbial dynamics in anaerobic digestion reactors for treating organic urban residues during the start-up process.

Lett Appl Microbiol. 2017-6

[7]
Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition.

Anaerobe. 2017-8

[8]
The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste.

Biotechnol Biofuels. 2017-12-14

[9]
Lessons learned from the microbial ecology resulting from different inoculation strategies for biogas production from waste products of the bioethanol/sugar industry.

Biotechnol Biofuels. 2016-7-16

[10]
Inhibitory Effect of Coumarin on Syntrophic Fatty Acid-Oxidizing and Methanogenic Cultures and Biogas Reactor Microbiomes.

Appl Environ Microbiol. 2017-6-16

引用本文的文献

[1]
Metagenomic Exploration Uncovers Several Novel 'Candidatus' Species Involved in Acetate Metabolism in High-Ammonia Thermophilic Biogas Processes.

Microb Biotechnol. 2025-3

[2]
Two-stage conversion of syngas and pyrolysis aqueous condensate into L-malate.

Biotechnol Biofuels Bioprod. 2024-6-21

[3]
Current status and future developments of assessing microbiome composition and dynamics in anaerobic digestion systems using metagenomic approaches.

Heliyon. 2024-3-20

[4]
Enhanced methane production with co-feeding spent coffee grounds using spare capacity of existing anaerobic food waste digesters.

Sci Rep. 2024-2-23

[5]
Genome-resolved correlation mapping links microbial community structure to metabolic interactions driving methane production from wastewater.

Nat Commun. 2023-9-4

[6]
Potential of hydrochar/pyrochar derived from sawdust of oriental plane tree for stimulating methanization by mitigating propionic acid inhibition in mesophilic anaerobic digestion of swine manure.

Heliyon. 2023-2-23

[7]
Metagenomic Analysis of Anaerobic Microbial Communities Degrading Short-Chain Fatty Acids as Sole Carbon Sources.

Microorganisms. 2023-2-7

[8]
Impacts of coniferous bark-derived organic soil amendments on microbial communities in arable soil - a microcosm study.

FEMS Microbiol Ecol. 2023-2-28

[9]
Phage Genome Diversity in a Biogas-Producing Microbiome Analyzed by Illumina and Nanopore GridION Sequencing.

Microorganisms. 2022-2-4

[10]
The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics.

Environ Microbiome. 2021-3-16

本文引用的文献

[1]
Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production.

Waste Manag. 2014-5-10

[2]
Spatial and temporal variations of microbial community in a mixed plug-flow loop reactor fed with dairy manure.

Microb Biotechnol. 2014-4-1

[3]
Syntrophic acetate oxidation in industrial CSTR biogas digesters.

J Biotechnol. 2014-2-10

[4]
Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

PLoS One. 2013-10-16

[5]
Insights into the phylogeny and coding potential of microbial dark matter.

Nature. 2013-7-14

[6]
Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes.

Environ Microbiol Rep. 2011-3-21

[7]
454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters.

FEMS Microbiol Ecol. 2013-6-12

[8]
A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor.

Biotechnol Biofuels. 2013-1-15

[9]
Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea.

BMC Microbiol. 2012-9-11

[10]
Analysis of the syntrophic anaerobic digestion of volatile fatty acids using enriched cultures in a fixed-bed reactor.

Water Environ Res. 2012-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索