Suppr超能文献

安全信号检测统计方法的评估:一项模拟研究。

Evaluation of statistical methods for safety signal detection: a simulation study.

作者信息

Chen Maggie, Zhu Li, Chiruvolu Padmaja, Jiang Qi

机构信息

Amgen Inc., Thousand Oaks, 91320, CA, USA.

出版信息

Pharm Stat. 2015 Jan-Feb;14(1):11-9. doi: 10.1002/pst.1652. Epub 2014 Oct 20.

Abstract

Proactive evaluation of drug safety with systematic screening and detection is critical to protect patients' safety and important in regulatory approval of new drug indications and postmarketing communications and label renewals. In recent years, quite a few statistical methodologies have been developed to better evaluate drug safety through the life cycle of the product development. The statistical methods for flagging safety signals have been developed in two major areas - one for data collected from spontaneous reporting system, mostly in the postmarketing area, and the other for data from clinical trials. To our knowledge, the methods developed for one area have not been applied to the other one so far. In this article, we propose to utilize all such methods for flagging safety signals in both areas regardless of which specific area they were originally developed for. Therefore, we selected eight typical methods, that is, proportional reporting ratios, reporting odds ratios, the maximum likelihood ratio test, Bayesian confidence propagation neural network method, chi-square test for rates comparison, Benjamini and Hochberg procedure, new double false discovery rate control procedure, and Bayesian hierarchical mixture model for systematic comparison through simulations. The Benjamini and Hochberg procedure and new double false discovery rate control procedure perform best overall in terms of sensitivity and false discovery rate. The likelihood ratio test also performs well when the sample sizes are large.

摘要

通过系统筛查和检测对药物安全性进行前瞻性评估对于保护患者安全至关重要,并且在新药适应症的监管审批、上市后沟通以及标签更新方面也很重要。近年来,已经开发了不少统计方法,以便在产品开发的整个生命周期中更好地评估药物安全性。用于标记安全信号的统计方法主要在两个领域得到了发展——一个是针对从自发报告系统收集的数据,主要是在上市后领域;另一个是针对临床试验数据。据我们所知,到目前为止,为一个领域开发的方法尚未应用于另一个领域。在本文中,我们建议无论最初是为哪个特定领域开发的,都将所有此类标记安全信号的方法用于这两个领域。因此,我们选择了八种典型方法,即比例报告比、报告比值比、最大似然比检验、贝叶斯置信传播神经网络方法、率比较的卡方检验、Benjamini和Hochberg方法、新的双错误发现率控制方法以及贝叶斯分层混合模型,通过模拟进行系统比较。就敏感性和错误发现率而言,Benjamini和Hochberg方法以及新的双错误发现率控制方法总体表现最佳。当样本量较大时,似然比检验也表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验