INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals (GDEC), 5 chemin de Beaulieu, F-63 100, Clermont-Ferrand, France; Blaise Pascal University, UMR1095 GDEC, F-63 170, Aubière, France.
Glob Chang Biol. 2015 Feb;21(2):911-25. doi: 10.1111/gcb.12768. Epub 2014 Dec 3.
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
作物生长模型越来越多地被用于量化由于气候或作物管理引起的全球变化的影响。因此,模拟结果的准确性是一个主要关注点。使用作物模型集合进行的研究可以提供有关模型准确性和不确定性的有价值信息,但此类研究组织起来较为困难,而且直到最近才开始进行。我们报告了迄今为止最大的集合研究,该研究测试了 27 个小麦模型,这些模型在四个不同的地点的模拟多个作物生长和产量变量的准确性方面进行了测试。包括籽粒产量(GY)和籽粒蛋白浓度(GPC)在内的不同终季变量的模型平均相对误差为 24-38%。模型的 GY 或 GPC 的误差与季内变量的误差之间几乎没有关系。因此,大多数模型并没有通过准确模拟前期的生长动态来实现 GY 和 GPC 的准确模拟。在考虑所有变量时,集合模拟(采用模拟值的平均值(e-mean)或中位数(e-median))给出的估计值比任何单个模型都要好。与单个模型相比,e-median 在模拟实测 GY 方面排名第一,在 GPC 方面排名第三。随着集合成员数量的增加,e-mean 和 e-median 的误差减小,而超过 10 个模型后,误差减小很少。我们得出的结论是,多模型集合可以用于创建新的估计值,从而提高模拟生长动态的准确性和一致性。我们认为这些结果适用于其他作物物种,并假设它们更普遍地适用于生态系统模型。