Suppr超能文献

加速分子动力学与蛋白质构象变化:使用膜嵌入模型神经递质转运体的理论与实践指南

Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter.

作者信息

Gedeon Patrick C, Thomas James R, Madura Jeffry D

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.

出版信息

Methods Mol Biol. 2015;1215:253-87. doi: 10.1007/978-1-4939-1465-4_12.

Abstract

Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis.

摘要

分子动力学模拟为蛋白质构象变化建模提供了一种强大且准确的方法,然而时间尺度限制常常阻碍对感兴趣的动力学性质进行直接评估。对于罕见事件的发生,需要大量的分子动力学步骤,这使得系统能够克服能量障碍并从一个势能最小值构象转变为另一个。对于许多蛋白质而言,能量图景因众多势能阱而进一步复杂化,每个势能阱由高自由能障碍分隔开,并且每个势能阱都可能代表一种功能上重要的蛋白质构象。为了克服这些障碍,加速分子动力学利用一种强大的偏置势能函数来模拟不同势能最小值之间的转变。与经典分子动力学模拟相比,这种直接的方法能更有效地对构象空间进行采样,不需要对势能图景有先验知识,并且能收敛到正确的正则分布。在此,我们回顾加速分子动力学背后的理论,并在蛋白质构象变化建模的背景下讨论该方法。作为一个实际例子,我们详细逐步解释了如何使用嵌入脂质细胞膜中的模型神经递质转运体进行加速分子动力学模拟。然后使用主成分分析来研究与底物转运循环相关的蛋白质构象变化。

相似文献

2
Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules.
J Chem Phys. 2004 Jun 22;120(24):11919-29. doi: 10.1063/1.1755656.
3
Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation.
Methods Enzymol. 2016;578:373-428. doi: 10.1016/bs.mie.2016.05.042. Epub 2016 Jul 11.
4
Quantitative Assessment of the Energetics of Dopamine Translocation by Human Dopamine Transporter.
J Phys Chem B. 2018 May 31;122(21):5336-5346. doi: 10.1021/acs.jpcb.7b10340. Epub 2017 Dec 26.
5
Lipid membranes for membrane proteins.
Methods Mol Biol. 2015;1215:73-90. doi: 10.1007/978-1-4939-1465-4_4.
6
The Environment Shapes the Inner Vestibule of LeuT.
PLoS Comput Biol. 2016 Nov 11;12(11):e1005197. doi: 10.1371/journal.pcbi.1005197. eCollection 2016 Nov.
8
Dynamics of Bcl-xL in water and membrane: molecular simulations.
PLoS One. 2013 Oct 8;8(10):e76837. doi: 10.1371/journal.pone.0076837. eCollection 2013.
9
Markov state modeling of membrane transport proteins.
J Struct Biol. 2021 Dec;213(4):107800. doi: 10.1016/j.jsb.2021.107800. Epub 2021 Sep 29.
10
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.

引用本文的文献

2
Conformational analysis of the IQSEC2 protein by statistical thermodynamics.
Curr Res Struct Biol. 2024 Oct 3;8:100158. doi: 10.1016/j.crstbi.2024.100158. eCollection 2024.
3
Computational insights into the mechanisms underlying structural destabilization and recovery in trafficking-deficient hERG mutants.
Front Mol Biosci. 2024 Aug 13;11:1341727. doi: 10.3389/fmolb.2024.1341727. eCollection 2024.
4
Exploring the activation mechanism of metabotropic glutamate receptor 2.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2401079121. doi: 10.1073/pnas.2401079121. Epub 2024 May 13.
5
6
Effect of Fc core fucosylation and light chain isotype on IgG1 flexibility.
Commun Biol. 2023 Mar 3;6(1):237. doi: 10.1038/s42003-023-04622-7.
7
Mechanistic insights of ABC importer HutCD involved in heme internalization by Vibrio cholerae.
Sci Rep. 2022 May 3;12(1):7152. doi: 10.1038/s41598-022-11213-9.
8
Exploring CCRL2 chemerin binding using accelerated molecular dynamics.
Proteins. 2022 Sep;90(9):1714-1720. doi: 10.1002/prot.26348. Epub 2022 Apr 29.
10
Deciphering collaborative sidechain motions in proteins during molecular dynamics simulations.
Sci Rep. 2020 Sep 28;10(1):15901. doi: 10.1038/s41598-020-72766-1.

本文引用的文献

1
Enhancing protein adsorption simulations by using accelerated molecular dynamics.
PLoS One. 2013 Jun 3;8(6):e64883. doi: 10.1371/journal.pone.0064883. Print 2014.
2
Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition.
PLoS Comput Biol. 2013 Apr;9(4):e1003032. doi: 10.1371/journal.pcbi.1003032. Epub 2013 Apr 11.
3
Using steered molecular dynamics to predict and assess Hsp70 substrate-binding domain mutants that alter prion propagation.
PLoS Comput Biol. 2013;9(1):e1002896. doi: 10.1371/journal.pcbi.1002896. Epub 2013 Jan 31.
4
Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics.
J Chem Theory Comput. 2012 Sep 11;8(9):2997-3002. doi: 10.1021/ct300284c. Epub 2012 Jul 27.
6
Steered molecular dynamics simulations on the binding of the appendant structure and helix-β2 in domain-swapped human cystatin C dimer.
J Biomol Struct Dyn. 2012;30(6):652-61. doi: 10.1080/07391102.2012.689698. Epub 2012 Jun 26.
7
Multi-timescale conformational dynamics of the SH3 domain of CD2-associated protein using NMR spectroscopy and accelerated molecular dynamics.
Angew Chem Int Ed Engl. 2012 Jun 18;51(25):6103-6. doi: 10.1002/anie.201202026. Epub 2012 May 8.
8
How fast-folding proteins fold.
Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.
9
Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation.
PLoS Comput Biol. 2011 Oct;7(10):e1002178. doi: 10.1371/journal.pcbi.1002178. Epub 2011 Oct 13.
10
Implementation of Accelerated Molecular Dynamics in NAMD.
Comput Sci Discov. 2011;4(1). doi: 10.1088/1749-4699/4/1/015002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验