Mücksch Christian, Urbassek Herbert M
Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern, Germany.
PLoS One. 2013 Jun 3;8(6):e64883. doi: 10.1371/journal.pone.0064883. Print 2014.
The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ([Formula: see text][Formula: see text]s) and experiment (up to hours), and the accordingly different 'final' adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces.
蛋白质在表面吸附的原子模型构建受到模拟([公式:见正文][公式:见正文]秒)和实验(长达数小时)不同时间尺度的阻碍,以及相应不同的“最终”吸附构象的影响。我们提供证据表明,加速分子动力学方法是获得平衡吸附状态的有效工具。作为一个模型系统,我们研究了蛋白质骨形态发生蛋白-2(BMP-2)在明确的盐水环境中在石墨上的吸附。我们证明,由于显著改善了构象空间的采样,加速分子动力学能够观察到蛋白质在疏水石墨表面的完全展开和铺展。这一结果与蛋白质与疏水表面接触时发生变性的一般发现一致。