Suppr超能文献

作为HIV-1蛋白酶抑制剂的P2配体以改善脑渗透性的偕二氟双四氢呋喃的设计:合成、X射线研究及生物学评价

Design of gem-difluoro-bis-tetrahydrofuran as P2 ligand for HIV-1 protease inhibitors to improve brain penetration: synthesis, X-ray studies, and biological evaluation.

作者信息

Ghosh Arun K, Yashchuk Sofiya, Mizuno Akira, Chakraborty Nilanjana, Agniswamy Johnson, Wang Yuan-Fang, Aoki Manabu, Gomez Pedro Miguel Salcedo, Amano Masayuki, Weber Irene T, Mitsuya Hiroaki

机构信息

Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907 (USA).

出版信息

ChemMedChem. 2015 Jan;10(1):107-15. doi: 10.1002/cmdc.201402358. Epub 2014 Oct 21.

Abstract

The structure-based design, synthesis, biological evaluation, and X-ray structural studies of fluorine-containing HIV-1 protease inhibitors are described. The synthesis of both enantiomers of the gem-difluoro-bis-THF ligands was carried out in a stereoselective manner using a Reformatskii-Claisen reaction as the key step. Optically active ligands were converted into protease inhibitors. Two of these inhibitors, (3R,3aS,6aS)-4,4-difluorohexahydrofuro[2,3-b]furan-3-yl(2S,3R)-3-hydroxy-4-((N-isobutyl-4-methoxyphenyl)sulfonamido)-1-phenylbutan-2-yl) carbamate (3) and (3R,3aS,6aS)-4,4-difluorohexahydrofuro[2,3-b]furan-3-yl(2S,3R)-3-hydroxy-4-((N-isobutyl-4-aminophenyl)sulfonamido)phenylbutan-2-yl) carbamate (4), exhibited HIV-1 protease inhibitory Ki values in the picomolar range. Both 3 and 4 showed very potent antiviral activity, with respective EC50 values of 0.8 and 3.1 nM against the laboratory strain HIV-1LAI . The two inhibitors exhibited better lipophilicity profiles than darunavir, and also showed much improved blood-brain barrier permeability in an in vitro model. A high-resolution X-ray structure of inhibitor 4 in complex with HIV-1 protease was determined, revealing that the fluorinated ligand makes extensive interactions with the S2 subsite of HIV-1 protease, including hydrogen bonding interactions with the protease backbone atoms. Moreover, both fluorine atoms on the bis-THF ligand formed strong interactions with the flap Gly 48 carbonyl oxygen atom.

摘要

本文描述了含氟HIV-1蛋白酶抑制剂的基于结构的设计、合成、生物学评价及X射线结构研究。偕二氟双四氢呋喃配体的两种对映体的合成以立体选择性方式进行,关键步骤为Reformatskii-Claisen反应。将光学活性配体转化为蛋白酶抑制剂。其中两种抑制剂,(3R,3aS,6aS)-4,4-二氟六氢呋喃并[2,3-b]呋喃-3-基(2S,3R)-3-羟基-4-((N-异丁基-4-甲氧基苯基)磺酰胺基)-1-苯基丁-2-基)氨基甲酸酯(3)和(3R,3aS,6aS)-4,4-二氟六氢呋喃并[2,3-b]呋喃-3-基(2S,3R)-3-羟基-4-((N-异丁基-4-氨基苯基)磺酰胺基)苯基丁-2-基)氨基甲酸酯(4),在皮摩尔范围内表现出HIV-1蛋白酶抑制Ki值。3和4均显示出非常强的抗病毒活性,对实验室菌株HIV-1LAI的EC50值分别为0.8和3.1 nM。这两种抑制剂比达芦那韦表现出更好的亲脂性特征,并且在体外模型中还显示出血脑屏障通透性有很大改善。测定了抑制剂4与HIV-1蛋白酶复合物的高分辨率X射线结构,结果表明氟化配体与HIV-1蛋白酶的S2亚位点有广泛相互作用,包括与蛋白酶主链原子的氢键相互作用。此外,双四氢呋喃配体上的两个氟原子与翼片Gly 48羰基氧原子形成了强相互作用。

相似文献

6
Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance.
Acc Chem Res. 2008 Jan;41(1):78-86. doi: 10.1021/ar7001232. Epub 2007 Aug 28.
8
Substituent effects on P2-cyclopentyltetrahydrofuranyl urethanes: design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors.
Bioorg Med Chem Lett. 2012 Mar 15;22(6):2308-11. doi: 10.1016/j.bmcl.2012.01.061. Epub 2012 Feb 2.

引用本文的文献

1
Beyond darunavir: recent development of next generation HIV-1 protease inhibitors to combat drug resistance.
Chem Commun (Camb). 2022 Oct 20;58(84):11762-11782. doi: 10.1039/d2cc04541a.
4
Nature Inspired Molecular Design: Stereoselective Synthesis of Bicyclic and Polycyclic Ethers for Potent HIV-1 Protease Inhibitors.
Asian J Org Chem. 2018 Aug;7(8):1448-1466. doi: 10.1002/ajoc.201800255. Epub 2018 Jun 8.
5
Potent antiviral HIV-1 protease inhibitor combats highly drug resistant mutant PR20.
Biochem Biophys Res Commun. 2019 Oct 29;519(1):61-66. doi: 10.1016/j.bbrc.2019.08.126. Epub 2019 Aug 29.
6
Novel Central Nervous System (CNS)-Targeting Protease Inhibitors for Drug-Resistant HIV Infection and HIV-Associated CNS Complications.
Antimicrob Agents Chemother. 2019 Jun 24;63(7). doi: 10.1128/AAC.00466-19. Print 2019 Jul.
7
Drug Resistance Mutation L76V Alters Nonpolar Interactions at the Flap-Core Interface of HIV-1 Protease.
ACS Omega. 2018 Sep 30;3(9):12132-12140. doi: 10.1021/acsomega.8b01683. Epub 2018 Sep 27.

本文引用的文献

2
Enhancing protein backbone binding--a fruitful concept for combating drug-resistant HIV.
Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1778-802. doi: 10.1002/anie.201102762. Epub 2012 Jan 31.
3
HIV-associated neurological disorders: a guide to pharmacotherapy.
CNS Drugs. 2012 Feb 1;26(2):123-34. doi: 10.2165/11597770-000000000-00000.
6
Fluorine bonding--how does it work in protein-ligand interactions?
J Chem Inf Model. 2009 Oct;49(10):2344-55. doi: 10.1021/ci9002393.
7
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
8
SHELXL: high-resolution refinement.
Methods Enzymol. 1997;277:319-43.
9
Fluorine in medicinal chemistry.
Chem Soc Rev. 2008 Feb;37(2):320-30. doi: 10.1039/b610213c. Epub 2007 Dec 13.
10
A short history of SHELX.
Acta Crystallogr A. 2008 Jan;64(Pt 1):112-22. doi: 10.1107/S0108767307043930. Epub 2007 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验