Department of Pharmacology, Weill Medical College, Cornell University, New York, New York 10065; email:
Annu Rev Biophys. 2015;44:187-206. doi: 10.1146/annurev-biophys-060414-033954.
RNAs have highly complex and dynamic cellular localization patterns. Technologies for imaging RNA in living cells are important for uncovering their function and regulatory pathways. One approach for imaging RNA involves genetically encoding fluorescent RNAs using RNA mimics of green fluorescent protein (GFP). These mimics are RNA aptamers that bind fluorophores resembling those naturally found in GFP and activate their fluorescence. These RNA-fluorophore complexes, including Spinach, Spinach2, and Broccoli, can be used to tag RNAs and to image their localization in living cells. In this article, we describe the generation and optimization of these aptamers, along with strategies for expanding the spectral properties of their associated RNA-fluorophore complexes. We also discuss the structural basis for the fluorescence and photophysical properties of Spinach, and we describe future prospects for designing enhanced RNA-fluorophore complexes with enhanced photostability and increased sensitivity.
RNAs 具有高度复杂和动态的细胞定位模式。用于在活细胞中对 RNA 进行成像的技术对于揭示其功能和调控途径非常重要。一种用于对 RNA 成像的方法涉及使用 GFP 的 RNA 类似物对荧光 RNA 进行基因编码。这些类似物是与 GFP 中天然存在的荧光团类似的 RNA 适体,能够激活其荧光。这些 RNA-荧光团复合物,包括 Spinach、Spinach2 和 Broccoli,可以用于标记 RNA 并在活细胞中对其定位进行成像。在本文中,我们描述了这些适体的生成和优化,以及扩展它们相关的 RNA-荧光团复合物的光谱特性的策略。我们还讨论了 Spinach 的荧光和光物理性质的结构基础,并描述了设计具有增强的光稳定性和提高的灵敏度的增强型 RNA-荧光团复合物的未来前景。