Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology , Pohang 790-784, Korea.
Acc Chem Res. 2014 Nov 18;47(11):3321-30. doi: 10.1021/ar400326q. Epub 2014 Oct 22.
In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium point are reasonably close to the CCSD(T) results but sometimes slightly deviate from them because interaction energies were not particularly optimized with parameters. Nevertheless, because the electron cloud deforms when neighboring atoms/ions induce an electric field, both vdW-DF2 and PBE0-TS seem to properly reproduce the resulting change of dispersion interaction. Thus, improvements are needed in both vdW-DF2 and PBE0-TS to better describe the interaction energies, while the B97-D3 method could benefit from the incorporation of polarization-driven energy changes that show highly anisotropic behavior. Although the current DFT-D methods need further improvement, DFT-D is very useful for computer-aided molecular design. We have used these newly developed DFT-D methods to calculate the interactions between graphene and DNA nucleobases. Using DFT-D, we describe the design of molecular receptors of π-systems, graphene based electronic devices, metalloporphyrin half-metal based spintronic devices as graphene nanoribbon (GNR) analogs, and graphene based molecular electronic devices for DNA sequencing. DFT-D has also helped us understand quantum phenomena in materials and devices of π-systems including graphene.
在化学和生物系统中,各种相互作用控制着分子的化学和物理性质、组装现象和电子输运性质,它们相互竞争并控制着材料的微观结构。对每个组件的精确控制可以使研究人员设计受体或传感器、新的分子结构、具有新颖形态的结构以及功能分子或器件。在本综述中,我们描述了π-分子系统的结构和电子及自旋电子特性,这些特性对于控制各种基于碳的系统的结构非常重要。尽管密度泛函理论(DFT)是描述分子相互作用的重要工具,但 DFT 无法准确表示色散相互作用,这使得难以正确描述π-相互作用。然而,最近开发的 DFT 色散校正使得我们能够以经济有效的方式包含这些色散相互作用。我们研究了各种π-体系的非共价相互作用,包括基于色散校正密度泛函理论(DFT-D)的芳香族-π、脂肪族-π 和非-π 体系。此外,我们还探讨了 DFT-D 与耦合簇理论(CCSD(T))和莫尔-普莱塞特二阶微扰理论(MP2)的完全基组(CBS)极限值的有效性。DFT-D 方法仍然无法预测苯二聚体和环己烷二聚体中结合能的正确排序。然而,总体而言,DFT-D 预测的结合能与 CCSD(T) 结果大致一致。在大多数情况下,使用 B97-D3 方法得到的结果与使用优化能量拟合参数的 CCSD(T) 结果密切吻合。另一方面,vdW-DF2 和 PBE0-TS 方法从计算得到的电子密度中估计色散能。在这些近似中,平衡点附近的相互作用能与 CCSD(T) 结果相当接近,但有时会略有偏离,因为相互作用能没有特别用参数进行优化。尽管当相邻原子/离子引起电场时,电子云会发生变形,但 vdW-DF2 和 PBE0-TS 似乎都能正确地再现色散相互作用的变化。因此,vdW-DF2 和 PBE0-TS 都需要进一步改进,以更好地描述相互作用能,而 B97-D3 方法则可以受益于包含显示出各向异性行为的极化驱动能量变化的改进。尽管目前的 DFT-D 方法需要进一步改进,但 DFT-D 对于计算机辅助分子设计非常有用。我们使用这些新开发的 DFT-D 方法来计算石墨烯与 DNA 碱基之间的相互作用。使用 DFT-D,我们描述了π-系统分子受体、基于石墨烯的电子器件、基于金属卟啉半金属的自旋电子器件(作为石墨烯纳米带(GNR)类似物)以及基于石墨烯的分子电子器件的设计,这些器件用于 DNA 测序。DFT-D 还帮助我们理解了包括石墨烯在内的π-系统材料和器件中的量子现象。