Weber Stephen, Stirnimann Christian U, Wieser Mara, Frey Daniel, Meier Roger, Engelhardt Sabrina, Li Xiaodan, Capitani Guido, Kammerer Richard A, Hilbi Hubert
From the Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany.
the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland.
J Biol Chem. 2014 Dec 5;289(49):34175-88. doi: 10.1074/jbc.M114.592568. Epub 2014 Oct 22.
The causative agent of Legionnaires' pneumonia, Legionella pneumophila, colonizes diverse environmental niches, including biofilms, plant material, and protozoa. In these habitats, myo-inositol hexakisphosphate (phytate) is prevalent and used as a phosphate storage compound or as a siderophore. L. pneumophila replicates in protozoa and mammalian phagocytes within a unique "Legionella-containing vacuole." The bacteria govern host cell interactions through the Icm/Dot type IV secretion system (T4SS) and ∼300 different "effector" proteins. Here we characterize a hitherto unrecognized Icm/Dot substrate, LppA, as a phytate phosphatase (phytase). Phytase activity of recombinant LppA required catalytically essential cysteine (Cys(231)) and arginine (Arg(237)) residues. The structure of LppA at 1.4 Å resolution revealed a mainly α-helical globular protein stabilized by four antiparallel β-sheets that binds two phosphate moieties. The phosphates localize to a P-loop active site characteristic of dual specificity phosphatases or to a non-catalytic site, respectively. Phytate reversibly abolished growth of L. pneumophila in broth, and growth inhibition was relieved by overproduction of LppA or by metal ion titration. L. pneumophila lacking lppA replicated less efficiently in phytate-loaded Acanthamoeba castellanii or Dictyostelium discoideum, and the intracellular growth defect was complemented by the phytase gene. These findings identify the chelator phytate as an intracellular bacteriostatic component of cell-autonomous host immunity and reveal a T4SS-translocated L. pneumophila phytase that counteracts intracellular bacterial growth restriction by phytate. Thus, bacterial phytases might represent therapeutic targets to combat intracellular pathogens.
军团菌肺炎的病原体嗜肺军团菌可在多种环境生态位中定殖,包括生物膜、植物材料和原生动物。在这些栖息地中,肌醇六磷酸(植酸)普遍存在,并用作磷酸盐储存化合物或铁载体。嗜肺军团菌在独特的“含军团菌液泡”内的原生动物和哺乳动物吞噬细胞中复制。细菌通过Icm/Dot IV型分泌系统(T4SS)和大约300种不同的“效应器”蛋白来控制宿主细胞相互作用。在这里,我们将一种迄今未被识别的Icm/Dot底物LppA鉴定为植酸磷酸酶(植酸酶)。重组LppA的植酸酶活性需要催化必需的半胱氨酸(Cys(231))和精氨酸(Arg(237))残基。LppA在1.4 Å分辨率下的结构显示,它是一种主要由α螺旋组成的球状蛋白,由四个反平行β折叠稳定,可结合两个磷酸基团。磷酸盐分别定位于双特异性磷酸酶特有的P环活性位点或非催化位点。植酸可逆地抑制嗜肺军团菌在肉汤中的生长,过量表达LppA或通过金属离子滴定可缓解生长抑制。缺乏lppA的嗜肺军团菌在用植酸负载的卡氏棘阿米巴或盘基网柄菌中复制效率较低,植酸酶基因可弥补细胞内生长缺陷。这些发现确定螯合剂植酸是细胞自主宿主免疫的细胞内抑菌成分,并揭示了一种T4SS易位的嗜肺军团菌植酸酶,该酶可抵消植酸对细胞内细菌生长的限制。因此,细菌植酸酶可能是对抗细胞内病原体的治疗靶点。