Schneider Anja, Stelljes Christian, Adams Caroline, Kirchner Stefan, Burkhard Gabi, Jarzombski Sabine, Broer Inge, Horn Patricia, Elsayed Ashraf, Hagl Peter, Leister Dario, Koop Hans-Ulrich
Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany.
Transgenic Res. 2015 Apr;24(2):267-77. doi: 10.1007/s11248-014-9842-8. Epub 2014 Oct 25.
Plastid-encoded genes are maternally inherited in most plant species. Transgenes located on the plastid genome are thus within a natural confinement system, preventing their distribution via pollen. However, a low-frequency leakage of plastids via pollen seems to be universal in plants. Here we report that a very low-level paternal inheritance in Arabidopsis thaliana occurs under field conditions. As pollen donor an Arabidopsis accession (Ler-Ely) was used, which carried a plastid-localized atrazine resistance due to a point mutation in the psbA gene. The frequency of pollen transmission into F1 plants, based on their ability to express the atrazine resistance was 1.9 × 10(-5). We extended our analysis to another cruciferous species, the world-wide cultivated crop Brassica napus. First, we isolated a fertile and stable plastid transformant (T36) in a commercial cultivar of B. napus (cv Drakkar). In T36 the aadA and the bar genes were integrated in the inverted repeat region of the B. napus plastid DNA following particle bombardment of hypocotyl segments. Southern blot analysis confirmed transgene integration and homoplasmy of plastid DNA. Line T36 expressed Basta resistance from the inserted bar gene and this trait was used to estimate the frequency of pollen transmission into F1 plants. A frequency of <2.6 × 10(-5) was determined in the greenhouse. Taken together, our data show a very low rate of paternal plastid transmission in Brassicacea. Moreover, the establishment of plastid transformation in B. napus facilitates a safe use of this important crop plant for plant biotechnology.
在大多数植物物种中,质体编码基因是母系遗传的。因此,位于质体基因组上的转基因处于一种天然的限制系统内,可防止其通过花粉传播。然而,质体通过花粉的低频渗漏在植物中似乎很普遍。在此我们报告,在田间条件下拟南芥中存在极低水平的父系遗传现象。作为花粉供体,使用了一个拟南芥种质(Ler-Ely),由于psbA基因中的一个点突变,该种质具有质体定位的莠去津抗性。基于F1植株表达莠去津抗性的能力,花粉传递到F1植株中的频率为1.9×10⁻⁵。我们将分析扩展到另一种十字花科植物,即全球广泛种植的作物甘蓝型油菜。首先,我们在甘蓝型油菜的一个商业品种(cv Drakkar)中分离出了一个可育且稳定的质体转化体(T36)。在T36中,通过对下胚轴片段进行粒子轰击,aadA和bar基因整合到了甘蓝型油菜质体DNA的反向重复区域。Southern杂交分析证实了转基因的整合以及质体DNA的同质性。T36系从插入的bar基因表达了对草丁膦的抗性,该性状用于估计花粉传递到F1植株中的频率。在温室中确定的频率<2.6×10⁻⁵。综上所述,我们的数据表明十字花科中父系质体传递的速率非常低。此外,甘蓝型油菜中质体转化的建立有助于在植物生物技术中安全使用这种重要的作物。