Suppr超能文献

用于蛋白质组学和糖组学分析的酵母细胞外基质的生成、提取、纯化和分级分离方法。

Methodologies to generate, extract, purify and fractionate yeast ECM for analytical use in proteomics and glycomics.

作者信息

Faria-Oliveira Fábio, Carvalho Joana, Belmiro Celso L R, Martinez-Gomariz Montserrat, Hernaez Maria Luisa, Pavão Mauro, Gil Concha, Lucas Cândida, Ferreira Célia

机构信息

CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.

Institute of Medical Biochemistry, Laboratory of Glycoconjugates Biochemistry and Cellular Biology, Federal University of Rio de Janeiro/ Polo de Macaé, Macaé, Brazil.

出版信息

BMC Microbiol. 2014 Oct 25;14:244. doi: 10.1186/s12866-014-0244-0.

Abstract

BACKGROUND

In a multicellular organism, the extracellular matrix (ECM) provides a cell-supporting scaffold and helps maintaining the biophysical integrity of tissues and organs. At the same time it plays crucial roles in cellular communication and signalling, with implications in spatial organisation, motility and differentiation. Similarly, the presence of an ECM-like extracellular polymeric substance is known to support and protect bacterial and fungal multicellular aggregates, such as biofilms or colonies. However, the roles and composition of this microbial ECM are still poorly understood.

RESULTS

This work presents a protocol to produce S. cerevisiae and C. albicans ECM in an equally highly reproducible manner. Additionally, methodologies for the extraction and fractionation into protein and glycosidic analytical pure fractions were improved. These were subjected to analytical procedures, respectively SDS-PAGE, 2-DE, MALDI-TOF-MS and LC-MS/MS, and DAE and FPLC. Additional chemical methods were also used to test for uronic acids and sulphation.

CONCLUSIONS

The methodologies hereby presented were equally efficiently applied to extract high amounts of ECM material from S. cerevisiae and C. albicans mats, therefore showing their robustness and reproducibility for yECM molecular and structural characterization. yECM from S. cerevisiae and C. albicans displayed a different proteome and glycoside fractions. S. cerevisiae yECM presented two well-defined polysaccharides with different mass/charge, and C. albicans ECM presented a single different one. The chemical methods further suggested the presence of uronic acids, and chemical modification, possibly through sulphate substitution. All taken, the procedures herein described present the first sensible and concise approach to the molecular and chemical characterisation of the yeast ECM, opening the way to the in-depth study of the microbe multicellular aggregates structure and life-style.

摘要

背景

在多细胞生物体中,细胞外基质(ECM)提供细胞支撑支架,并有助于维持组织和器官的生物物理完整性。同时,它在细胞通讯和信号传导中发挥关键作用,对空间组织、运动性和分化具有重要意义。同样,已知类似ECM的细胞外聚合物的存在可支持和保护细菌和真菌的多细胞聚集体,如生物膜或菌落。然而,这种微生物ECM的作用和组成仍知之甚少。

结果

本研究提出了一种以同样高度可重复的方式生产酿酒酵母和白色念珠菌ECM的方案。此外,改进了蛋白质和糖苷分析纯级分的提取和分级方法。分别对这些级分进行了分析程序,即SDS-PAGE、二维电泳(2-DE)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)和液相色谱-串联质谱(LC-MS/MS),以及二乙氨基乙基纤维素(DEAE)和快速蛋白质液相色谱(FPLC)。还使用了其他化学方法检测糖醛酸和硫酸化。

结论

本文提出的方法同样有效地应用于从酿酒酵母和白色念珠菌菌垫中提取大量的ECM材料,因此显示出它们在酵母ECM分子和结构表征方面的稳健性和可重复性。酿酒酵母和白色念珠菌的酵母ECM显示出不同的蛋白质组和糖苷级分。酿酒酵母的酵母ECM呈现出两种具有不同质荷比的明确多糖,而白色念珠菌的ECM呈现出一种不同的多糖。化学方法进一步表明存在糖醛酸,以及可能通过硫酸酯取代的化学修饰。综上所述,本文所述的程序为酵母ECM的分子和化学表征提供了第一种合理且简洁的方法,为深入研究微生物多细胞聚集体的结构和生活方式开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36e2/4219020/168c0be72171/12866_2014_244_Fig1_HTML.jpg

相似文献

3
Elemental biochemical analysis of the polysaccharides in the extracellular matrix of the yeast Saccharomyces cerevisiae.
J Basic Microbiol. 2015 Jun;55(6):685-94. doi: 10.1002/jobm.201400781. Epub 2015 Jan 15.
4
Proteomics for the analysis of the Candida albicans biofilm lifestyle.
Proteomics. 2006 Nov;6(21):5795-804. doi: 10.1002/pmic.200600332.
5
A proteomics performance standard to support measurement quality in proteomics.
Proteomics. 2012 Apr;12(7):923-31. doi: 10.1002/pmic.201100522.
7
Analysis of Candida albicans plasma membrane proteome.
Proteomics. 2009 Oct;9(20):4770-86. doi: 10.1002/pmic.200800988.
8
Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells.
Proteomics. 2012 Aug;12(14):2331-9. doi: 10.1002/pmic.201100588.
10
Evaluation of protein N-glycosylation in 2-DE: Erythropoietin as a study case.
Proteomics. 2007 Dec;7(23):4278-91. doi: 10.1002/pmic.200700572.

引用本文的文献

1
Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in adhesion and biofilm formation.
Cell Surf. 2018 Mar 26;1:43-56. doi: 10.1016/j.tcsw.2018.03.002. eCollection 2018 Mar.
2
Aspects of Multicellularity in Yeast: A Review of Evolutionary and Physiological Mechanisms.
Genes (Basel). 2020 Jun 24;11(6):690. doi: 10.3390/genes11060690.
3
Electrospray patterning of yeast cells for applications in alcoholic fermentation.
Sci Rep. 2019 Dec 9;9(1):18662. doi: 10.1038/s41598-019-55225-4.

本文引用的文献

1
Yeast colonies: a model for studies of aging, environmental adaptation, and longevity.
Oxid Med Cell Longev. 2012;2012:601836. doi: 10.1155/2012/601836. Epub 2012 Aug 13.
2
Programmed cell death in Saccharomyces cerevisiae is hampered by the deletion of GUP1 gene.
BMC Microbiol. 2012 May 22;12:80. doi: 10.1186/1471-2180-12-80.
3
Glycosaminoglycans: key players in cancer cell biology and treatment.
FEBS J. 2012 Apr;279(7):1177-97. doi: 10.1111/j.1742-4658.2012.08529.x. Epub 2012 Mar 12.
4
Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies.
J Cell Biol. 2011 Sep 5;194(5):679-87. doi: 10.1083/jcb.201103129. Epub 2011 Aug 29.
5
General factors important for the formation of structured biofilm-like yeast colonies.
Fungal Genet Biol. 2010 Dec;47(12):1012-22. doi: 10.1016/j.fgb.2010.08.005. Epub 2010 Aug 20.
6
How to survive within a yeast colony?: Change metabolism or cope with stress?
Commun Integr Biol. 2010 Mar;3(2):198-200. doi: 10.4161/cib.3.2.11026.
7
Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins.
J Proteomics. 2010 Apr 18;73(6):1183-95. doi: 10.1016/j.jprot.2010.02.005. Epub 2010 Feb 20.
8
CBB staining protocol with higher sensitivity and mass spectrometric compatibility.
Electrophoresis. 2010 Jan;31(4):593-8. doi: 10.1002/elps.200900481.
10
Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.
Mycopathologia. 2010 May;169(5):323-31. doi: 10.1007/s11046-009-9264-y. Epub 2009 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验