Suppr超能文献

一种用于植物组织的光学透明技术,可实现深度成像并与荧光显微镜兼容。

An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy.

作者信息

Warner Cherish A, Biedrzycki Meredith L, Jacobs Samuel S, Wisser Randall J, Caplan Jeffrey L, Sherrier D Janine

机构信息

Delaware Biotechnology Institute (C.A.W., S.S.J., J.C., D.J.S.) andDepartments of Biological Sciences (C.A.W., M.L.B., S.S.J., J.C., D.J.S.); andPlant and Soil Sciences (M.L.B., R.J.W., J.C., D.J.S.), University of Delaware, Newark, Delaware 19717-1303

Delaware Biotechnology Institute (C.A.W., S.S.J., J.C., D.J.S.) andDepartments of Biological Sciences (C.A.W., M.L.B., S.S.J., J.C., D.J.S.); andPlant and Soil Sciences (M.L.B., R.J.W., J.C., D.J.S.), University of Delaware, Newark, Delaware 19717-1303.

出版信息

Plant Physiol. 2014 Dec;166(4):1684-7. doi: 10.1104/pp.114.244673. Epub 2014 Oct 24.

Abstract

We report on a nondestructive clearing technique that enhances transmission of light through specimens from diverse plant species, opening unique opportunities for microscope-enabled plant research. After clearing, plant organs and thick tissue sections are amenable to deep imaging. The clearing method is compatible with immunocytochemistry techniques and can be used in concert with common fluorescent probes, including widely adopted protein tags such as GFP, which has fluorescence that is preserved during the clearing process.

摘要

我们报道了一种无损透明化技术,该技术可增强不同植物物种标本的光传输,为基于显微镜的植物研究带来了独特机遇。透明化处理后,植物器官和厚组织切片适合进行深度成像。该透明化方法与免疫细胞化学技术兼容,可与常见荧光探针协同使用,包括广泛应用的蛋白质标签如绿色荧光蛋白(GFP),其荧光在透明化过程中得以保留。

相似文献

1
An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy.
Plant Physiol. 2014 Dec;166(4):1684-7. doi: 10.1104/pp.114.244673. Epub 2014 Oct 24.
2
Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize.
Planta. 2006 Jun;224(1):72-82. doi: 10.1007/s00425-005-0195-7. Epub 2005 Dec 15.
3
Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing.
Phys Med Biol. 2007 Apr 21;52(8):2035-54. doi: 10.1088/0031-9155/52/8/001. Epub 2007 Mar 20.
4
Comparative analysis of remodelling of the plant-microbe interface in Pisum sativum and Medicago truncatula symbiotic nodules.
Protoplasma. 2019 Jul;256(4):983-996. doi: 10.1007/s00709-019-01355-5. Epub 2019 Feb 22.
6
NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes.
Plant Cell. 2012 Nov;24(11):4498-510. doi: 10.1105/tpc.112.103747. Epub 2012 Nov 6.
8
ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging.
Development. 2015 Dec 1;142(23):4168-79. doi: 10.1242/dev.127613. Epub 2015 Oct 22.
9
Three-Dimensional Imaging of Plant Organs Using a Simple and Rapid Transparency Technique.
Plant Cell Physiol. 2016 Mar;57(3):462-72. doi: 10.1093/pcp/pcw027. Epub 2016 Feb 29.

引用本文的文献

2
A Method to Visualize Cell Proliferation of : A Case Study of the Root Apical Meristem.
Plant Direct. 2025 Apr 28;9(4):e70060. doi: 10.1002/pld3.70060. eCollection 2025 Apr.
3
A neutral invertase controls cell division besides hydrolysis of sucrose for nutrition during germination and seed setting in rice.
iScience. 2024 Jun 8;27(7):110217. doi: 10.1016/j.isci.2024.110217. eCollection 2024 Jul 19.
4
Clearing techniques for deeper imaging of plants and plant-microbe interactions.
Appl Microsc. 2024 May 31;54(1):5. doi: 10.1186/s42649-024-00098-9.
5
Clearing of Vascular Tissue in Arabidopsis thaliana for Reporter Analysis of Gene Expression.
Methods Mol Biol. 2024;2722:227-239. doi: 10.1007/978-1-0716-3477-6_15.
6
Comparing the efficiency of six clearing methods in developing seeds of Arabidopsis thaliana.
Plant Reprod. 2022 Dec;35(4):279-293. doi: 10.1007/s00497-022-00453-4. Epub 2022 Nov 15.
7
Development of Microscopic Techniques for the Visualization of Plant-Root-Knot Nematode Interaction.
Plants (Basel). 2022 Apr 26;11(9):1165. doi: 10.3390/plants11091165.
8
TISSUE CLEARING.
Nat Rev Methods Primers. 2021;1(1). doi: 10.1038/s43586-021-00080-9. Epub 2021 Dec 16.
9
Improved clearing method contributes to deep imaging of plant organs.
Commun Biol. 2022 Jan 10;5(1):12. doi: 10.1038/s42003-021-02955-9.
10
Means to Quantify Vascular Cell File Numbers in Different Tissues.
Methods Mol Biol. 2022;2382:155-179. doi: 10.1007/978-1-0716-1744-1_10.

本文引用的文献

2
3
SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.
Nat Neurosci. 2013 Aug;16(8):1154-61. doi: 10.1038/nn.3447. Epub 2013 Jun 23.
4
Structural and molecular interrogation of intact biological systems.
Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.
5
Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae.
Science. 2012 Jun 22;336(6088):1590-5. doi: 10.1126/science.1222934.
9
Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector.
Cell. 2008 Feb 8;132(3):449-62. doi: 10.1016/j.cell.2007.12.031.
10
Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules.
Planta. 2007 Feb;225(3):541-50. doi: 10.1007/s00425-006-0369-y. Epub 2006 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验