Teulle Alexandre, Bosman Michel, Girard Christian, Gurunatha Kargal L, Li Mei, Mann Stephen, Dujardin Erik
CEMES CNRS UPR 8011, 29 rue J. Marvig, 31055 Toulouse Cedex 4, France.
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, 117602 Singapore, Singapore.
Nat Mater. 2015 Jan;14(1):87-94. doi: 10.1038/nmat4114. Epub 2014 Oct 26.
Harnessing the optical properties of noble metals down to the nanometre scale is a key step towards fast and low-dissipative information processing. At the 10-nm length scale, metal crystallinity and patterning as well as probing of surface plasmon properties must be controlled with a challenging high level of precision. Here, we demonstrate that ultimate lateral confinement and delocalization of surface plasmon modes are simultaneously achieved in extended self-assembled networks comprising linear chains of partially fused gold nanoparticles. The spectral and spatial distributions of the surface plasmon modes associated with the colloidal superstructures are evidenced by performing monochromated electron energy-loss spectroscopy with a nanometre-sized electron probe. We prepare the metallic bead strings by electron-beam-induced interparticle fusion of nanoparticle networks. The fused superstructures retain the native morphology and crystallinity but develop very low-energy surface plasmon modes that are capable of supporting long-range and spectrally tunable propagation in nanoscale waveguides.
利用贵金属直至纳米尺度的光学特性是迈向快速且低耗散信息处理的关键一步。在10纳米的长度尺度下,金属结晶度、图案化以及表面等离子体特性的探测必须以具有挑战性的高精度水平进行控制。在此,我们证明,在由部分融合的金纳米颗粒线性链组成的扩展自组装网络中,同时实现了表面等离子体模式的最终横向限制和离域。通过使用纳米尺寸的电子探针进行单色电子能量损失光谱,证明了与胶体超结构相关的表面等离子体模式的光谱和空间分布。我们通过电子束诱导的纳米颗粒网络颗粒间融合制备金属珠链。融合后的超结构保留了原始形态和结晶度,但发展出了非常低能量的表面等离子体模式,这些模式能够在纳米级波导中支持长程且光谱可调的传播。