Suppr超能文献

在7T磁场下测量肾组织弛豫时间。

Measuring renal tissue relaxation times at 7 T.

作者信息

Li Xiufeng, Bolan Patrick J, Ugurbil Kamil, Metzger Gregory J

机构信息

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.

出版信息

NMR Biomed. 2015 Jan;28(1):63-9. doi: 10.1002/nbm.3195. Epub 2014 Oct 23.

Abstract

As developments in RF coils and RF management strategies make performing ultra-high-field renal imaging feasible, understanding the relaxation times of the tissue becomes increasingly important for tissue characterization, sequence optimization and quantitative functional renal imaging, such as renal perfusion imaging using arterial spin labeling. By using a magnetization-prepared single-breath-hold fast spin echo imaging method, human renal T1 and T2 imaging studies were successfully performed at 7 T with 11 healthy volunteers (eight males, 45 ± 17 years, and three females, 29 ± 7 years, mean ± standard deviation, S.D.) while addressing challenges of B1 (+) inhomogeneity and short-term specific absorption rate limits. At 7 T, measured renal T1 values for the renal cortex and medulla (mean ± S.D.) from five healthy volunteers who participated in both 3 T and two-session 7 T studies were 1661 ± 68 ms and 2094 ± 67 ms, and T2 values were 108 ± 7 ms and 126 ± 6 ms. For comparison, similar measurements were made at 3 T, where renal cortex and medulla T1 values of 1261 ± 86 ms and 1676 ± 94 ms and T2 values of 121 ± 5 ms and 138 ± 7 ms were obtained. Measurements at 3 T and 7 T were significantly different for both T1 and T2 values in both renal tissues. Reproducibility studies at 7 T demonstrated that T1 and T2 estimations were robust, with group mean percentage differences of less than 4%.

摘要

随着射频线圈和射频管理策略的发展使得进行超高场肾脏成像成为可能,了解组织的弛豫时间对于组织特征描述、序列优化以及定量功能肾脏成像(如使用动脉自旋标记的肾脏灌注成像)变得越来越重要。通过使用磁化准备的单次屏气快速自旋回波成像方法,在7T下对11名健康志愿者(8名男性,45±17岁,3名女性,29±7岁,均值±标准差,S.D.)成功进行了人体肾脏T1和T2成像研究,同时应对了B1(+)不均匀性和短期比吸收率限制等挑战。在7T时,参与3T和两阶段7T研究的5名健康志愿者的肾皮质和髓质的测量肾T1值(均值±S.D.)分别为1661±68ms和2094±67ms,T2值分别为108±7ms和126±6ms。作为比较,在3T下进行了类似测量,获得的肾皮质和髓质T1值分别为1261±86ms和1676±94ms,T2值分别为121±5ms和138±7ms。在两个肾脏组织中,3T和7T下的T1和T2值测量均存在显著差异。7T下的重复性研究表明,T1和T2估计值具有稳健性,组均值百分比差异小于4%。

相似文献

1
Measuring renal tissue relaxation times at 7 T.
NMR Biomed. 2015 Jan;28(1):63-9. doi: 10.1002/nbm.3195. Epub 2014 Oct 23.
4
Magnetic resonance imaging relaxation times of female reproductive organs.
Acta Radiol. 2015 Aug;56(8):997-1001. doi: 10.1177/0284185114542367. Epub 2014 Sep 10.
8
[Myocardial microcirculation in humans--new approaches using MRI].
Herz. 2003 Mar;28(2):74-81. doi: 10.1007/s00059-003-2451-6.

引用本文的文献

1
An explanation for the triphasic dependency of apparent diffusion coefficient (ADC) on T2 relaxation time: the multiple T2 compartments model.
Quant Imaging Med Surg. 2025 Apr 1;15(4):3779-3791. doi: 10.21037/qims-2025-195. Epub 2025 Mar 5.
2
Concentric-object and equiangular-object methods to perform standardized regional analysis in renal mpMRI.
MAGMA. 2025 Feb;38(1):67-83. doi: 10.1007/s10334-024-01208-0. Epub 2024 Oct 19.
3
A tri-phasic relationship between T2 relaxation time and magnetic resonance imaging (MRI)-derived apparent diffusion coefficient (ADC).
Quant Imaging Med Surg. 2023 Dec 1;13(12):8873-8880. doi: 10.21037/qims-23-1342. Epub 2023 Sep 28.
4
Renal MRI: From Nephron to NMR Signal.
J Magn Reson Imaging. 2023 Dec;58(6):1660-1679. doi: 10.1002/jmri.28828. Epub 2023 May 26.
5
Progress in Imaging the Human Torso at the Ultrahigh Fields of 7 and 10.5 T.
Magn Reson Imaging Clin N Am. 2021 Feb;29(1):e1-e19. doi: 10.1016/j.mric.2020.10.001.
7
Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions.
Top Magn Reson Imaging. 2019 Jun;28(3):101-124. doi: 10.1097/RMR.0000000000000202.
8
9
10
Quantitative single breath-hold renal arterial spin labeling imaging at 7T.
Magn Reson Med. 2018 Feb;79(2):815-825. doi: 10.1002/mrm.26742. Epub 2017 May 9.

本文引用的文献

1
Anteroposterior perfusion heterogeneity in human hippocampus measured by arterial spin labeling MRI.
NMR Biomed. 2013 Jun;26(6):613-21. doi: 10.1002/nbm.2898. Epub 2013 Feb 19.
2
Ultra high spatial and temporal resolution breast imaging at 7T.
NMR Biomed. 2013 Apr;26(4):367-75. doi: 10.1002/nbm.2868. Epub 2012 Oct 18.
3
First-pass contrast-enhanced renal MRA at 7 Tesla: initial results.
Eur Radiol. 2013 Apr;23(4):1059-66. doi: 10.1007/s00330-012-2666-0. Epub 2012 Oct 14.
4
Dynamically applied B1+ shimming solutions for non-contrast enhanced renal angiography at 7.0 Tesla.
Magn Reson Med. 2013 Jan;69(1):114-26. doi: 10.1002/mrm.24237. Epub 2012 Mar 22.
5
The road to functional imaging and ultrahigh fields.
Neuroimage. 2012 Aug 15;62(2):726-35. doi: 10.1016/j.neuroimage.2012.01.134. Epub 2012 Feb 8.
6
Comparison between eight- and sixteen-channel TEM transceive arrays for body imaging at 7 T.
Magn Reson Med. 2012 Apr;67(4):954-64. doi: 10.1002/mrm.23070. Epub 2011 Nov 18.
7
Improved quantification of brain perfusion using FAIR with active suppression of superior tagging (FAIR ASST).
J Magn Reson Imaging. 2011 Nov;34(5):1037-44. doi: 10.1002/jmri.22734. Epub 2011 Aug 23.
8
Ultra-high field 7T MRI: a new tool for studying Alzheimer's disease.
J Alzheimers Dis. 2011;26 Suppl 3:91-5. doi: 10.3233/JAD-2011-0023.
9
Contrast-enhanced ultra-high-field liver MRI: a feasibility trial.
Eur J Radiol. 2013 May;82(5):760-7. doi: 10.1016/j.ejrad.2011.07.004. Epub 2011 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验