Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, 02115, MA, USA.
Department of Urology,, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
Pediatr Radiol. 2020 May;50(5):698-705. doi: 10.1007/s00247-020-04617-0. Epub 2020 Jan 27.
Current methods to estimate glomerular filtration rate (GFR) have shortcomings. Estimates based on serum creatinine are known to be inaccurate in the chronically ill and during acute changes in renal function. Gold standard methods such as inulin and Tc diethylenetriamine pentaacetic acid (DTPA) require blood or urine sampling and thus can be difficult to perform in children. Motion-robust radial volumetric interpolated breath-hold examination (VIBE) dynamic contrast-enhanced MRI represents a novel tool for estimating GFR that has not been validated in children.
The purpose of our study was to determine the feasibility and accuracy of GFR measured by motion-robust radial VIBE dynamic contrast-enhanced MRI compared to estimates by serum creatinine (eGFR) and Tc DTPA in children.
We enrolled children, 0-18 years of age, who were undergoing both a contrast-enhanced MRI and nuclear medicine Tc DTPA glomerular filtration rate (NM-GFR) within 2 weeks of each other. Enrolled children consented to an additional 6-min dynamic contrast-enhanced MRI scan using the motion-robust high spatiotemporal resolution prototype dynamic radial VIBE sequence (Siemens, Erlangen, Germany) at 3 tesla (T). The images were reconstructed offline with high temporal resolution (~3 s/volume) using compressed sensing image reconstruction including regularization in temporal dimension to improve image quality and reduce streaking artifacts. Images were then automatically post-processed using in-house-developed software. Post-processing steps included automatic segmentation of kidney parenchyma and aorta using convolutional neural network techniques and tracer kinetic model fitting using the Sourbron two-compartment model to calculate the MR-based GFR (MR-GFR). The NM-GFR was compared to MR-GFR and estimated GFR based on serum creatinine (eGFR) using Pearson correlation coefficient and Bland-Altman analysis.
Twenty-one children (7 female, 14 male) were enrolled between February 2017 and May 2018. Data from six of these children were not further analyzed because of deviations from the MRI protocol. Fifteen patients were analyzed (5 female, 10 male; average age 5.9 years); the method was technically feasible in all children. The results showed that the MR-GFR correlated with NM-GFR with a Pearson correlation coefficient (r-value) of 0.98. Bland-Altman analysis (i.e. difference of MR-GFR and NM-GFR versus mean of NM-GFR and MR-GFR) showed a mean difference of -0.32 and reproducibility coefficient of 18 with 95% confidence interval, and the coefficient of variation of 6.7% with values between -19 (-1.96 standard deviation) and 18 (+1.96 standard deviation). In contrast, serum creatinine compared with NM-GFR yielded an r-value of 0.73. Bland-Altman analysis (i.e. difference of eGFR and NM-GFR versus mean of NM-GFR and eGFR) showed a mean difference of 2.9 and reproducibility coefficient of 70 with 95% confidence interval, and the coefficient of variation of 25% with values between -67 (-1.96 standard deviation) and 73 (+1.96 standard deviation).
MR-GFR is a technically feasible and reliable method of measuring GFR when compared to the reference standard, NM-GFR by serum Tc DTPA, and MR-GFR is more reliable than estimates based on serum creatinine.
目前估计肾小球滤过率(GFR)的方法存在不足。在慢性疾病和肾功能急性变化期间,基于血清肌酐的估计值不准确。金标准方法,如菊粉和 Tc 二乙三胺五乙酸(DTPA),需要采血或尿液样本,因此在儿童中可能难以实施。运动稳健的径向容积内插呼吸暂停检查(VIBE)动态对比增强 MRI 是一种估计 GFR 的新工具,尚未在儿童中得到验证。
我们的研究目的是确定运动稳健的径向 VIBE 动态对比增强 MRI 测量的 GFR 与血清肌酐(eGFR)和 Tc DTPA 在儿童中的估计值相比的可行性和准确性。
我们招募了 0-18 岁的儿童,他们在彼此的 2 周内接受了对比增强 MRI 和核医学 Tc DTPA 肾小球滤过率(NM-GFR)检查。纳入的儿童同意额外进行 6 分钟的动态对比增强 MRI 扫描,使用运动稳健的高时空分辨率原型动态径向 VIBE 序列(西门子,德国埃尔朗根)在 3 特斯拉(T)下进行。图像使用压缩感知图像重建离线重建,具有高时间分辨率(~3s/volume),包括在时间维度上的正则化,以提高图像质量并减少条纹伪影。然后使用内部开发的软件自动对图像进行后处理。后处理步骤包括使用卷积神经网络技术自动分割肾实质和主动脉,以及使用 Sourbron 两室模型进行示踪剂动力学模型拟合,以计算基于 MR 的 GFR(MR-GFR)。NM-GFR 与 MR-GFR 和基于血清肌酐的估计 GFR(eGFR)进行比较,使用 Pearson 相关系数和 Bland-Altman 分析。
2017 年 2 月至 2018 年 5 月期间,共招募了 21 名儿童(7 名女性,14 名男性)。由于偏离 MRI 方案,其中 6 名儿童的数据未进一步分析。对 15 名患者进行了分析(5 名女性,10 名男性;平均年龄 5.9 岁);该方法在所有儿童中均具有技术可行性。结果表明,MR-GFR 与 NM-GFR 相关,Pearson 相关系数(r 值)为 0.98。Bland-Altman 分析(即 MR-GFR 和 NM-GFR 的差异与 NM-GFR 和 MR-GFR 的平均值的差异)显示平均差异为-0.32,再现系数为 18,95%置信区间,变异系数为 6.7%,值在-19(-1.96 标准差)和 18(1.96 标准差)之间。相比之下,血清肌酐与 NM-GFR 的 r 值为 0.73。Bland-Altman 分析(即 eGFR 和 NM-GFR 的差异与 NM-GFR 和 eGFR 的平均值的差异)显示平均差异为 2.9,再现系数为 70,95%置信区间,变异系数为 25%,值在-67(-1.96 标准差)和 73(1.96 标准差)之间。
与参考标准(血清 Tc DTPA 的 NM-GFR)相比,MR-GFR 是一种可行且可靠的测量 GFR 的方法,并且比基于血清肌酐的估计值更可靠。