Hari Taylor P A, Labana Puneet, Boileau Meaghan, Boddy Christopher N
Departments of Chemistry and Biology, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1N 6N5 (Canada).
Chembiochem. 2014 Dec 15;15(18):2656-61. doi: 10.1002/cbic.201402475. Epub 2014 Oct 29.
Bacterial polyketides are a rich source of chemical diversity and pharmaceutical agents. Understanding the biochemical basis for their biosynthesis and the evolutionary driving force leading to this diversity is essential to take advantage of the enzymes as biocatalysts and to access new chemical diversity for drug discovery. Biochemical characterization of the thioesterase (TE) responsible for 6-deoxyerythronolide macrocyclization shows that a small, evolutionarily accessible change to the substrate can increase the chemical diversity of products, including macrodiolide formation. We propose an evolutionary model in which TEs are by nature non-selective for the type of chemistry they catalyze, producing a range of metabolites. As one metabolite becomes essential for improving fitness in a particular environment, the TE evolves to enrich for that corresponding reactivity. This hypothesis is supported by our phylogenetic analysis, showing convergent evolution of macrodiolide-forming TEs.
细菌聚酮化合物是化学多样性和药物制剂的丰富来源。了解其生物合成的生化基础以及导致这种多样性的进化驱动力,对于利用这些酶作为生物催化剂以及获取用于药物发现的新化学多样性至关重要。负责6-脱氧红霉内酯大环化的硫酯酶(TE)的生化特性表明,对底物进行一个小的、在进化上可实现的改变可以增加产物的化学多样性,包括大环二醇酯的形成。我们提出了一个进化模型,其中TE本质上对它们催化的化学反应类型没有选择性,会产生一系列代谢产物。随着一种代谢产物对于在特定环境中提高适应性变得至关重要,TE会进化以富集相应的反应活性。我们的系统发育分析支持了这一假设,显示出形成大环二醇酯的TE的趋同进化。