Suppr超能文献

宏基因组酶发现的路线图。

A roadmap for metagenomic enzyme discovery.

机构信息

Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.

出版信息

Nat Prod Rep. 2021 Nov 17;38(11):1994-2023. doi: 10.1039/d1np00006c.

Abstract

Covering: up to 2021Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a 'needle in a haystack' without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare methods for enzyme discovery including phylogenetics, sequence similarity networks, genomic context, 3D structure-based approaches, and machine learning techniques. We also discuss various experimental strategies to test computational predictions including heterologous expression and screening. Finally, we provide an outlook for future directions in the field with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.

摘要

涵盖范围

截至 2021 年,宏基因组学已经产生了大量的测序数据,使人们能够一窥未培养微生物的生物合成潜力。虽然现在几乎可以从地球上的每个环境中获得有关微生物群落的基于基因组的信息,但直接从测序数据准确预测生物催化功能仍然具有挑战性。与初级代谢途径相比,参与次级代谢的酶通常催化具有多种底物的特异性反应,使这些途径成为发现新酶学的丰富资源。迄今为止,从环境 DNA(eDNA)研究中获得的功能见解在很大程度上依赖于fosmid 或 cosmid 文库中克隆的 eDNA 片段的 PCR 或基于活性的筛选。作为替代方法,宏基因组学在避免通过 PCR 或基于活性的功能宏基因组学工作流程引入的常见偏差的情况下,具有直接从 eDNA 中发现新酶的潜力。然而,直接从 eDNA 推断新的酶功能类似于在没有基因型和表型之间直接联系的情况下在干草堆中寻找“针”。本综述的目的是提供一条路线图,用于导航宏基因组测序数据并识别新的候选生物合成酶。我们涵盖了挖掘宏基因组和探索蛋白质序列空间的计算和实验策略,重点是天然产物生物合成。具体来说,我们比较了包括系统发育学、序列相似性网络、基因组背景、基于 3D 结构的方法和机器学习技术在内的酶发现方法。我们还讨论了各种用于测试计算预测的实验策略,包括异源表达和筛选。最后,我们对该领域的未来方向进行了展望,重点是元组学、单细胞基因组学、无细胞表达系统和序列无关的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/800a/8597712/50a15c0ae0a0/d1np00006c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验