Suppr超能文献

使用发射光谱解混和独立激发串扰校正进行定量荧光共振能量转移测量。

Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction.

作者信息

Zhang J, Li H, Chai L, Zhang L, Qu J, Chen T

机构信息

MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.

出版信息

J Microsc. 2015 Feb;257(2):104-16. doi: 10.1111/jmi.12189. Epub 2014 Oct 29.

Abstract

Quantification of fluorescence resonance energy transfer (FRET) needs at least two external samples, an acceptor-only reference and a linked FRET reference, to calibrate fluorescence signal. Furthermore, all measurements for references and FRET samples must be performed under the same instrumental conditions. Based on a novel notion to predetermine the molar extinction coefficient ratio (RC ) of acceptor-to-donor for the correction of acceptor excitation crosstalk, we present here a robust and independent emission-spectral unmixing FRET methodology, Iem-spFRET, which can simultaneously measure the E and RC of FRET sample without any external references, such that Iem-spFRET circumvents the rigorous restriction of keeping the same imaging conditions for all FRET experiments and thus can be used for the direct measurement of FRET sample. We validate Iem-spFRET by measuring the absolute E and RC values of standard constructs with different acceptor-to-donor stoichiometry expressed in living cells. Our results demonstrate that Iem-spFRET is a simple and powerful tool for real-time monitoring the dynamic intermolecular interaction within single living cells.

摘要

荧光共振能量转移(FRET)的定量分析至少需要两个外部样本,即仅含受体的参照样本和连接的FRET参照样本,以校准荧光信号。此外,参照样本和FRET样本的所有测量必须在相同的仪器条件下进行。基于一种预先确定受体与供体的摩尔消光系数比(RC)以校正受体激发串扰的新观念,我们在此提出一种稳健且独立的发射光谱解混FRET方法,即Iem-spFRET,它无需任何外部参照样本就能同时测量FRET样本的E和RC,这样Iem-spFRET规避了对所有FRET实验保持相同成像条件的严格限制,因此可用于直接测量FRET样本。我们通过测量活细胞中表达的具有不同受体与供体化学计量比的标准构建体的绝对E和RC值来验证Iem-spFRET。我们的结果表明,Iem-spFRET是实时监测单个活细胞内动态分子间相互作用的一种简单而强大的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验