Bednarkiewicz Artur, Chan Emory M, Prorok Katarzyna
Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okolna 2 50-422 Wroclaw Poland
The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.
Nanoscale Adv. 2020 Aug 18;2(10):4863-4872. doi: 10.1039/d0na00404a. eCollection 2020 Oct 13.
Förster Resonance Energy Transfer (FRET) between donor (D) and acceptor (A) molecules is a phenomenon commonly exploited to study or visualize biological interactions at the molecular level. However, commonly used organic D and A molecules often suffer from photobleaching and spectral bleed-through, and their spectral properties hinder quantitative analysis. Lanthanide-doped upconverting nanoparticles (UCNPs) as alternative D species offer significant improvements in terms of photostability, spectral purity and background-free luminescence detection, but they bring new challenges related to multiple donor ions existing in a single large size UCNP and the need for nanoparticle biofunctionalization. Considering the relatively short Förster distance (typically below 5-7 nm), it becomes a non-trivial task to assure sufficiently strong D-A interaction, which translates directly to the sensitivity of such bio-sensors. In this work we propose a solution to these issues, which employs the photon avalanche (PA) phenomenon in lanthanide-doped materials. Using theoretical modelling, we predict that these PA systems would be highly susceptible to the presence of A and that the estimated sensitivity range extends to distances 2 to 4 times longer ( 10-25 nm) than those typically found in conventional FRET systems. This promises high sensitivity, low background and spectral or temporal biosensing, and provides the basis for a radically novel approach to combine luminescence imaging and self-normalized bio-molecular interaction sensing.
供体(D)分子与受体(A)分子之间的荧光共振能量转移(FRET)是一种常用于在分子水平上研究或可视化生物相互作用的现象。然而,常用的有机供体和受体分子常常受到光漂白和光谱渗漏的影响,并且它们的光谱特性阻碍了定量分析。作为替代供体物种的镧系掺杂上转换纳米颗粒(UCNP)在光稳定性、光谱纯度和无背景发光检测方面有显著改善,但它们带来了与单个大尺寸UCNP中存在多个供体离子以及纳米颗粒生物功能化需求相关的新挑战。考虑到相对较短的福斯特距离(通常低于5 - 7纳米),确保足够强的供体 - 受体相互作用成为一项艰巨任务,这直接转化为此类生物传感器的灵敏度。在这项工作中,我们提出了一个解决这些问题的方案,该方案利用了镧系掺杂材料中的光子雪崩(PA)现象。通过理论建模,我们预测这些PA系统对受体的存在将高度敏感,并且估计的灵敏度范围扩展到比传统FRET系统中通常发现的距离长2至4倍(10 - 25纳米)。这有望实现高灵敏度、低背景以及光谱或时间生物传感,并为将发光成像与自归一化生物分子相互作用传感相结合的全新方法提供基础。