Fishbaugh James, Prastawa Marcel, Gerig Guido, Durrleman Stanley
Scientific Computing and Imaging Institute, University of Utah.
INRIA/ICM, Pitié SalpêtrièrE Hospital, Paris, France.
Proc IEEE Int Symp Biomed Imaging. 2014 Apr;2014:385-388. doi: 10.1109/ISBI.2014.6867889.
A variety of regression schemes have been proposed on images or shapes, although available methods do not handle them jointly. In this paper, we present a framework for joint image and shape regression which incorporates images as well as anatomical shape information in a consistent manner. Evolution is described by a generative model that is the analog of linear regression, which is fully characterized by baseline images and shapes (intercept) and initial momenta vectors (slope). Further, our framework adopts a control point parameterization of deformations, where the dimensionality of the deformation is determined by the complexity of anatomical changes in time rather than the sampling of the image and/or the geometric data. We derive a gradient descent algorithm which simultaneously estimates baseline images and shapes, location of control points, and momenta. Experiments on real medical data demonstrate that our framework effectively combines image and shape information, resulting in improved modeling of 4D (3D space + time) trajectories.
尽管现有的方法不能联合处理图像和形状,但针对图像或形状已经提出了各种回归方案。在本文中,我们提出了一个联合图像和形状回归的框架,该框架以一致的方式纳入了图像以及解剖形状信息。演化由一个生成模型描述,该模型类似于线性回归,完全由基线图像和形状(截距)以及初始动量向量(斜率)来表征。此外,我们的框架采用了控制点参数化的变形,其中变形的维度由时间上解剖变化的复杂性决定,而不是由图像和/或几何数据的采样决定。我们推导了一种梯度下降算法,该算法同时估计基线图像和形状、控制点的位置以及动量。对真实医学数据的实验表明,我们的框架有效地结合了图像和形状信息,从而改进了对四维(三维空间 + 时间)轨迹的建模。