Suppr超能文献

用于改进四维轨迹建模的图像与形状数据的测地线回归

GEODESIC REGRESSION OF IMAGE AND SHAPE DATA FOR IMPROVED MODELING OF 4D TRAJECTORIES.

作者信息

Fishbaugh James, Prastawa Marcel, Gerig Guido, Durrleman Stanley

机构信息

Scientific Computing and Imaging Institute, University of Utah.

INRIA/ICM, Pitié SalpêtrièrE Hospital, Paris, France.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2014 Apr;2014:385-388. doi: 10.1109/ISBI.2014.6867889.

Abstract

A variety of regression schemes have been proposed on images or shapes, although available methods do not handle them jointly. In this paper, we present a framework for joint image and shape regression which incorporates images as well as anatomical shape information in a consistent manner. Evolution is described by a generative model that is the analog of linear regression, which is fully characterized by baseline images and shapes (intercept) and initial momenta vectors (slope). Further, our framework adopts a control point parameterization of deformations, where the dimensionality of the deformation is determined by the complexity of anatomical changes in time rather than the sampling of the image and/or the geometric data. We derive a gradient descent algorithm which simultaneously estimates baseline images and shapes, location of control points, and momenta. Experiments on real medical data demonstrate that our framework effectively combines image and shape information, resulting in improved modeling of 4D (3D space + time) trajectories.

摘要

尽管现有的方法不能联合处理图像和形状,但针对图像或形状已经提出了各种回归方案。在本文中,我们提出了一个联合图像和形状回归的框架,该框架以一致的方式纳入了图像以及解剖形状信息。演化由一个生成模型描述,该模型类似于线性回归,完全由基线图像和形状(截距)以及初始动量向量(斜率)来表征。此外,我们的框架采用了控制点参数化的变形,其中变形的维度由时间上解剖变化的复杂性决定,而不是由图像和/或几何数据的采样决定。我们推导了一种梯度下降算法,该算法同时估计基线图像和形状、控制点的位置以及动量。对真实医学数据的实验表明,我们的框架有效地结合了图像和形状信息,从而改进了对四维(三维空间 + 时间)轨迹的建模。

相似文献

1
GEODESIC REGRESSION OF IMAGE AND SHAPE DATA FOR IMPROVED MODELING OF 4D TRAJECTORIES.
Proc IEEE Int Symp Biomed Imaging. 2014 Apr;2014:385-388. doi: 10.1109/ISBI.2014.6867889.
2
Geodesic shape regression in the framework of currents.
Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.
3
Geodesic image regression with a sparse parameterization of diffeomorphisms.
Geom Sci Inf (2013). 2013;8085:95-102. doi: 10.1007/978-3-642-40020-9_9.
4
Hierarchical Multi-Geodesic Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates.
Med Image Comput Comput Assist Interv. 2019 Oct;11767:57-65. doi: 10.1007/978-3-030-32251-9_7. Epub 2019 Oct 10.
5
Geodesic shape regression with multiple geometries and sparse parameters.
Med Image Anal. 2017 Jul;39:1-17. doi: 10.1016/j.media.2017.03.008. Epub 2017 Apr 5.
6
4D CONTINUOUS MEDIAL REPRESENTATION BY GEODESIC SHAPE REGRESSION.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1014-1017. doi: 10.1109/ISBI.2018.8363743. Epub 2018 May 24.
7
Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape.
Inf Process Med Imaging. 2023 Jun;13939:810-821. doi: 10.1007/978-3-031-34048-2_62. Epub 2023 Jun 8.
8
DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network.
IEEE Trans Vis Comput Graph. 2020 Jan;26(1):960-970. doi: 10.1109/TVCG.2019.2934369. Epub 2019 Aug 22.
9
ADAPTIVE GRADIENT DESCENT OPTIMIZATION OF INITIAL MOMENTA FOR GEODESIC SHOOTING IN DIFFEOMORPHISMS.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:868-872. doi: 10.1109/ISBI.2017.7950654. Epub 2017 Jun 19.
10
Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability.
Med Image Anal. 2015 Oct;25(1):37-44. doi: 10.1016/j.media.2015.04.009. Epub 2015 Apr 17.

引用本文的文献

1
Assessing the application of landmark-free morphometrics to macroevolutionary analyses.
BMC Ecol Evol. 2025 Apr 27;25(1):38. doi: 10.1186/s12862-025-02377-9.
2
Longitudinal Prediction of Infant MR Images With Multi-Contrast Perceptual Adversarial Learning.
Front Neurosci. 2021 Sep 9;15:653213. doi: 10.3389/fnins.2021.653213. eCollection 2021.
3
Brain structure in sagittal craniosynostosis.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10137. doi: 10.1117/12.2254442. Epub 2017 Mar 13.
4
Framework for shape analysis of white matter fiber bundles.
Neuroimage. 2018 Feb 15;167:466-477. doi: 10.1016/j.neuroimage.2017.11.052. Epub 2017 Dec 2.
5
Geodesic shape regression with multiple geometries and sparse parameters.
Med Image Anal. 2017 Jul;39:1-17. doi: 10.1016/j.media.2017.03.008. Epub 2017 Apr 5.
6
Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI.
Neuroimage. 2017 May 15;152:411-424. doi: 10.1016/j.neuroimage.2017.03.012. Epub 2017 Mar 9.
7
Longitudinal modeling of appearance and shape and its potential for clinical use.
Med Image Anal. 2016 Oct;33:114-121. doi: 10.1016/j.media.2016.06.014. Epub 2016 Jun 15.

本文引用的文献

1
A VECTOR MOMENTA FORMULATION OF DIFFEOMORPHISMS FOR IMPROVED GEODESIC REGRESSION AND ATLAS CONSTRUCTION.
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:1219-1222. doi: 10.1109/ISBI.2013.6556700.
2
Geodesic shape regression in the framework of currents.
Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.
4
Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data.
Int J Comput Vis. 2013 May;103(1):22-59. doi: 10.1007/s11263-012-0592-x.
5
Geodesic regression for image time-series.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):655-62. doi: 10.1007/978-3-642-23629-7_80.
6
Optimal data-driven sparse parameterization of diffeomorphisms for population analysis.
Inf Process Med Imaging. 2011;22:123-34. doi: 10.1007/978-3-642-22092-0_11.
7
Landmark matching via large deformation diffeomorphisms.
IEEE Trans Image Process. 2000;9(8):1357-70. doi: 10.1109/83.855431.
8
Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington's disease.
Mov Disord. 2000 May;15(3):552-60. doi: 10.1002/1531-8257(200005)15:3<552::AID-MDS1020>3.0.CO;2-P.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验