Suppr超能文献

用于改进四维轨迹建模的图像与形状数据的测地线回归

GEODESIC REGRESSION OF IMAGE AND SHAPE DATA FOR IMPROVED MODELING OF 4D TRAJECTORIES.

作者信息

Fishbaugh James, Prastawa Marcel, Gerig Guido, Durrleman Stanley

机构信息

Scientific Computing and Imaging Institute, University of Utah.

INRIA/ICM, Pitié SalpêtrièrE Hospital, Paris, France.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2014 Apr;2014:385-388. doi: 10.1109/ISBI.2014.6867889.

Abstract

A variety of regression schemes have been proposed on images or shapes, although available methods do not handle them jointly. In this paper, we present a framework for joint image and shape regression which incorporates images as well as anatomical shape information in a consistent manner. Evolution is described by a generative model that is the analog of linear regression, which is fully characterized by baseline images and shapes (intercept) and initial momenta vectors (slope). Further, our framework adopts a control point parameterization of deformations, where the dimensionality of the deformation is determined by the complexity of anatomical changes in time rather than the sampling of the image and/or the geometric data. We derive a gradient descent algorithm which simultaneously estimates baseline images and shapes, location of control points, and momenta. Experiments on real medical data demonstrate that our framework effectively combines image and shape information, resulting in improved modeling of 4D (3D space + time) trajectories.

摘要

尽管现有的方法不能联合处理图像和形状,但针对图像或形状已经提出了各种回归方案。在本文中,我们提出了一个联合图像和形状回归的框架,该框架以一致的方式纳入了图像以及解剖形状信息。演化由一个生成模型描述,该模型类似于线性回归,完全由基线图像和形状(截距)以及初始动量向量(斜率)来表征。此外,我们的框架采用了控制点参数化的变形,其中变形的维度由时间上解剖变化的复杂性决定,而不是由图像和/或几何数据的采样决定。我们推导了一种梯度下降算法,该算法同时估计基线图像和形状、控制点的位置以及动量。对真实医学数据的实验表明,我们的框架有效地结合了图像和形状信息,从而改进了对四维(三维空间 + 时间)轨迹的建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5e3/4209724/0b1ee020b5eb/nihms623312f1.jpg

相似文献

2
Geodesic shape regression in the framework of currents.在流形框架下的测地线形状回归
Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.
6
4D CONTINUOUS MEDIAL REPRESENTATION BY GEODESIC SHAPE REGRESSION.基于测地线形状回归的4D连续内侧表示
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1014-1017. doi: 10.1109/ISBI.2018.8363743. Epub 2018 May 24.
7
Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape.用于纵向形状多级分析的分层测地线多项式模型
Inf Process Med Imaging. 2023 Jun;13939:810-821. doi: 10.1007/978-3-031-34048-2_62. Epub 2023 Jun 8.

引用本文的文献

3
Brain structure in sagittal craniosynostosis.矢状缝早闭中的脑结构
Proc SPIE Int Soc Opt Eng. 2017 Feb;10137. doi: 10.1117/12.2254442. Epub 2017 Mar 13.
4
Framework for shape analysis of white matter fiber bundles.用于白质纤维束形状分析的框架。
Neuroimage. 2018 Feb 15;167:466-477. doi: 10.1016/j.neuroimage.2017.11.052. Epub 2017 Dec 2.

本文引用的文献

2
Geodesic shape regression in the framework of currents.在流形框架下的测地线形状回归
Inf Process Med Imaging. 2013;23:718-29. doi: 10.1007/978-3-642-38868-2_60.
5
Geodesic regression for image time-series.图像时间序列的测地线回归
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):655-62. doi: 10.1007/978-3-642-23629-7_80.
7
Landmark matching via large deformation diffeomorphisms.基于大变形微分同胚的地标匹配。
IEEE Trans Image Process. 2000;9(8):1357-70. doi: 10.1109/83.855431.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验